2017深度学习NLP进展与趋势
在过去几年中,深度学习(DL)在图像识别和语音处理等领域取得了巨大的进步。
它在自然语言处理(NLP)中的应用起初并不令人兴奋,但是随着技术的进步它也为一些常见的NLP任务提供了最先进的解决方案。命名实体识别(NER)、词性(POS)标签、情感分析通过神经网络模型获得了更好的解决。
在这篇文章中,我将回顾2017年DL在NLP领域的贡献。或许说是我想和大家分享一下我最喜欢的技术方案。2017年,DL在NLP中的使用不断扩大,在某些情况下产生了惊人的结果,所有迹象都表明这一趋势还会延续。
1.从word2vec到预训练模型
词嵌入是与NLP有关的DL最有名的技术。他们遵循哈里斯的分配假说,根据这个假说,具有相似含义的词通常会出现在可比较的语境中。关于词嵌入的详细解释,我建议你阅读加布里埃尔·莫尔德基(Gabriel Mordecki)的文章