吴恩达计算机视觉课程12大要点,如何赢得计算机视觉竞赛
上图是在课程的第4周创建的,将吴恩达的脸与 Leonid Afremov 的 Rain Princess 风格结合起来。
我最近在Coursera上完成了吴恩达(Andrew Ng)的计算机视觉课程。吴恩达在解释优化计算机视觉任务所需的许多复杂方法方面做得很出色。这门课中我最喜欢的部分是神经风格迁移(第11课),利用神经风格迁移,你可以将Claud Monet的风格与任何图像的内容结合起来。下面是一个例子:
在这篇文章中,我将讨论这门课的11节主要课程。需要注意的是,这是Deep Learning系列课程的第4门,由deeplearning.ai制作,可以到官网了解前三门课程。
第1课:为什么计算机视觉发展迅速?
大数据和算法的发展将会导致智能系统的测试误差收敛至贝叶斯最优误差。这将使得AI能够在所有领域超越人类水平,包括自然感知任务。
