深度学习史上最全总结
1、概述 深度学习(Deep Learning),这是一个在近几年火遍各个领域的词汇,似乎所有的算法只要跟它扯上关系,瞬间就显得高大上起来。但其实,从2006年Hinton在Science上的论文算起,深度学习发展至今才不到十年。 在这短短几年时间里,深度学习颠覆了语音识别、图像分类、文本理解等众多领域的算法设计思路,渐渐形成了一种从训练数据出发,经过一个端到端(end-to-end)的模型,然后直接输出得到最终结果的一种新模式。这不仅让一切变得更加简单,而且由于深度学习中的每一层都可以为了最终的任务来调整自己,最终实现各层之间的通力合作,因而可以大大提高任务的准确度。随着大数据时代的到来以及GPU等各种更加强大的计算设备的发展,深度学习如虎添翼,可以充分利用各种海量数据(标注数据、弱标注数据或者仅仅数据本身),完全自动地学习到抽象的知识表达,即把原始数据浓缩成某种知识。 当然,深度学习不见得是最完美的框架,离最终所谓的智能也还差得很远,而且目前还基本没有理论上的有效性解释。但是,无论如何,深度学习之风已经势不可挡! 深度学习本质上其实就是多层神经网络,而神经网络这个东西几十年...