自然语言处理的6大法宝
人工神经网络是一种基于大脑神经结构的非线性运算模型。它仅通过参考样本便可学习完成诸如分类、预测、决定和可视化等任务。
人工神经网络由许多神经元处理单元广泛连接而成。这些处理单元分为三类,包括输入层、隐含层(可以多于一层)和输出层。
位于输入层的神经元将信息传递到隐含层,隐含层再传递至输出层。每个神经元都有加权输入(突触)、一个激活函数(代表该神经元特定输出的函数)和一个输出。突触是将神经网络转换为参数化系统的可调参数。
激励信号由加权过的输入信号产生,再传递至激励函数以获得输出。常用的激励函数包括线性、阶跃、Sigmoid、双曲正切和线性修正单元(ReLu)函数。
线性函数
f(x)=ax
阶跃函数
Sigmoid函数
双曲正切函数
线性修正单元函数
通过训练对权值进行优化,从而达到最小化预测误差、提高预测准确率的目标。反向传播算法是一种计算损失函数











