首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/230781

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

古德-图灵估计

古德-图灵估计可以解决n元语法模型(n-gram)中的数据的稀疏问题。主要的思想是把非零的n元语法的概率降低匀给一些低概率n元语法,以修改最大似然估计与真实概率之间的偏离。是实用比较多的平滑算法。 图:从左到右的变化:把一部分看得见的事件的概率匀给未看见的事件 以统计词典中的概率为例,来说明古德-图铃公式。 假定在语料库中出现r次的词有Nr个,特别的出现0次(未登录词)出现的次数为N0个。语料库中词语的个数为N,显然 出现r次的词在词典中的相对频度为r/N。如果不做任何优化处理,就依这个相对频度作为这些词的概率估计。 加入当r非常小时,这么统计可能不可靠,因此出现r次的那些词在计算它们的概率时要使用一个更小一点的数,是dr,而不是r。古德-图灵估计按照下面的公式计算dr: dr=(r+1)* Nr+1/Nr 显然 一般来说,出现一次的词的数量比出现两次的词的数量多,出现两次的词的数量比出现三次的数量多。这叫做Zip...

自然语言处理多任务学习目标

更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud 在之前的博文中,我讨论了如何利用相关任务提高多任务学习(MTL)模型的性能。在此之前,我们需要了解一下到底什么是多任务学习。 多任务学习是和单任务学习相对的一种机器学习方法。在机器学习领域,标准的算法理论是一次学习一个任务,而多任务学习是一种联合学习,多个任务并行学习,结果相互影响。简单来说,就是同时求解多个问题。例如我们经常探讨的“千人千面”这种个性化问题,就是一种典型的多任务学习问题,它可以同时学习多个用户的兴趣偏好。 多任务学习(MTL)主要是由两个部分组成:a)用于任务学习的架构、b)训练相关的辅助任务。而且这两个方面仍有很大的改进空间。此外,多任务学习有可能成为从有限数据中训练更强大的模型的关键技术:训练得到的模型可以执行更广泛的NLP任

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Nacos

Nacos

Nacos /nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service 的首字母简称,一个易于构建 AI Agent 应用的动态服务发现、配置管理和AI智能体管理平台。Nacos 致力于帮助您发现、配置和管理微服务及AI智能体应用。Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现、服务配置、服务元数据、流量管理。Nacos 帮助您更敏捷和容易地构建、交付和管理微服务平台。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。