《计算机视觉:模型、学习和推理》一1.1 本书结构
1.1 本书结构
本书分为六部分,如图1-2所示。
本书的第一部分涵盖概率方面的背景知识。全书中所有的模型都是用概率的术语表示,概率是计算机视觉应用中一门很有用的语言。具有扎实工程数学背景的读者或许对这部分知识比较熟悉,但仍需要浏览这些章节以确保掌握相关的符号。那些尚不具备该背景的读者应该仔细阅读这些章节。这些知识相对比较简单,但它们是本书其余部分的基础。在正式提到计算机视觉知识前被迫阅读三十多页的数学虽然令人沮丧,但请相信我,这些基础知识将为后续的学习提供坚实的基础。
图1-2 章节依赖关系。本书分为六部分。第一部分是概率综述,是所有后续章节的基础。第二部分涉及机器学习和推理,主要描述生成模型和判别模型。第三部分讨论图模型,主要是大的模型中变量之间概率依赖关系的可视化表示方式。第四部分介绍预处理方法。第五部分涉及几何与变换。第六部分提

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
《中国人工智能学会通讯》——1.46 虹膜识别更安全
1.46 虹膜识别更安全 虹膜识别技术受追捧的另一个因素是:安全 因为人眼的虹膜在出生 6 个月后即发育成熟,之后就会保持终生不变,更不会出现如指纹磨损、面容变化导致设备拒识本人的情况,而且眼球剥离人体后虹膜会随瞳孔放大而失去活性,很难被伪造。相较于指纹 0.8%、人脸识别 2% 左右的误识率,虹膜识别误识率可低至百万分之一。下面是虹膜与市场现有其他生物特征的比较: 在国内,早期虹膜识别技术被广泛用于煤矿行业的考勤。西安中媒科技、北京中科虹霸是当时最大的两家虹膜识别设备提供商,前者的技术来源于西安交大,后者主要成员来自于中科院自动化所。它们都具备技术研发的基础,同时也做代理国外产品的生意,比如中媒科技就是 LG 在中国的最大代理商,后来中媒科技由于内部出现问题分支出两家公司:西安中虹智能科技、西安凯虹电子科技,同样是做代理。 一位专注虹膜识别研究多年的业内人士告诉钛媒体,当时虹膜识别设备的均价大概是 10 W 一台,业绩好的公司每年能够有 800 W 人民币的流水。但问题也随之而来,趋于高额的利润,一些没有技术研发能力的公司纷纷代理 LG、Panasonic 的产品,然后包外壳,号称是...
- 下一篇
《中国人工智能学会通讯》——11.14 三维人脸识别算法
11.14 三维人脸识别算法 三维人脸识别由于其类内差距大而类间差距小,且易受表情变化等非刚性形变影响等特点,一直是一个富有挑战的模式识别问题[5] 。此外,三维人脸识别还易受头发遮挡,以及数据缺失等因素的影响。通过分析发现,虽然表情变化会改变人脸的三维形状,但人脸的局部形状信息依然能保持较好的稳定性。因此,采用局部特征匹配的方式可以有效地降低表情变化对人脸识别带来的负面影响。基于此,本文提出了一种基于 RoPS 局部特征的三维人脸识别算法[9] 。该算法首先采用鼻尖检测获得人脸点云;接着对三维人脸进行平滑补洞等预处理;进而在人脸上检测一系列具有较强类属关联性的关键点 ( 如图 10所示 ),这些关键点在不同个体人脸上的分布存在较大差异,但在同一个个体不同表情人脸上的分布较为相似。在此基础上,通过局部特征匹配与点云配准实现对三维人脸的融合识别 ( 如图 11 所示 )。在 FRGC v2 标准数据集上的测试结果 ( 见表 1)表明,本文算法获得了非常高的识别率和对表情变化的稳健性。该算法的贡献在于两方面,一方面,采用局部特征有效降低了表情变化对人脸识别的不利影响;另一方面,综合利用人脸...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- Windows10,CentOS7,CentOS8安装Nodejs环境
- CentOS7编译安装Cmake3.16.3,解决mysql等软件编译问题
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- CentOS6,7,8上安装Nginx,支持https2.0的开启
- Hadoop3单机部署,实现最简伪集群
- SpringBoot2整合Thymeleaf,官方推荐html解决方案
- CentOS8安装MyCat,轻松搞定数据库的读写分离、垂直分库、水平分库
- CentOS关闭SELinux安全模块