深度学习之经典卷积神经网络的技术浅析 | 硬创公开课预告
卷积神经网络(Convolutional Neural Networks)是人工神经网络的重要分支,目前已经成为语音和图像识别领域的一大研究热点。特别是在图像识别领域,由于其特有的权值共享网络结构,大大降低了模型复杂度,减少了权值数量,因此可以直接将多维图像作为输入数据展开训练,有效避免了传统识别算法中复杂的特征提取和数据重建过程。
逐本溯源,卷积结构最早出现于 1984 年的神经认知机(NeoCognitron)。发展到 1998 年,诞生了第一代经典卷积神经网络 LeNet,但随着支持向量机 SVM(Support Vector Machine)的出现,卷积神经网络一度归于沉寂。后来,随着 ReLu(Rectified Linear Units)和 Dropout 等激活函数的提出,以及 GPU 和大数据带来的历史机遇,卷积神经