首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/86268

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

《TensorFlow技术解析与实战》——1.4 什么是TensorFlow

本节书摘来异步社区《TensorFlow技术解析与实战》一书中的第1章,第1.4节,作者:李嘉璇,更多章节内容可以访问云栖社区“异步社区”公众号查看。 1.4 什么是TensorFlow 想想,在机器学习流行之前,我们是如何做与语音和图像相关的识别的?大多数是基于规则的系统。例如,做自然语言处理,需要很多语言学的知识;再如,1997年的IBM的深蓝计算机对战国际象棋,也需要很多象棋的知识。 当以统计方法为核心的机器学习方法成为主流后,我们需要的领域知识就相对少了。重要的是做特征工程(feature engineering),然后调一些参数,根据一些领域的经验来不断提取特征,特征的好坏往往就直接决定了模型的好坏。这种方法的一大缺点是,对文字等抽象领域,特征还相对容易提取,而对语音这种一维时域信号和图像这种二维空域信号等领域,提取特征就相对困难。 深度学习的革命性在于,它不需要我们过多地提取特征,在神经网络的每一层中,计算机都可以自动学习出特征。为了实现深度学习中运用的神经网络,TensorFlow这样的深度学习开源工具就应运而生。我们可以使用它来搭建自己的神经网络。这就有点儿类似于PHP...

《R语言数据挖掘》----1.6 网络数据挖掘

本节书摘来自华章出版社《R语言数据挖掘》一书中的第1章,第1.6节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问云栖社区“华章计算机”公众号查看。 1.6 网络数据挖掘 网络挖掘的目的是从网络超链接结构、网页和使用数据来发现有用的信息或知识。网络是作为数据挖掘应用输入的最大数据源之一。 网络数据挖掘基于信息检索、机器学习(Machine Learning,ML)、统计学、模式识别和数据挖掘。尽管很多数据挖掘方法可以应用于网络挖掘,但是由于异构的、半结构化的和非结构化的网络数据,所以网络挖掘不单纯是一个数据挖掘问题。 网络挖掘任务至少可以定义为3种类型:网络结构挖掘(web structure mining):这有助于从超链接中寻找有关网址和页面的有用信息或者有价值的结

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

用户登录
用户注册