首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/703074

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

使用Relational Cache加速EMR Spark数据分析

使用Relational Cache加速Spark数据分析 背景 Cache被广泛应用于数据处理的各个领域和方向上,在目前,计算速度远远大于IO访问速度依然是计算设备上最突出的矛盾,计算设备上的存储从HDD -> SSD -> NVMe -> Mem -> L3-L2-L1 Cache -> 寄存器 -> CPU,存储设备距离CPU越近,计算和IO访问速度的差距越小,数据处理的速度越快,但同时存储从下到上,价格越来越贵,容量越来越小。Cache以更多的资源消耗为代价,将待处理数据预先推到离计算更近的位置,从而加速数据处理的速度,填补计算和IO访问速度的差距。对于Spark来说,HDFS cache,Alluxio等文件系统都提供了文件级别的Cache服务,通过将文件cache到内存中,加速数据处理的

钉钉群直播【基于Spark实现的MLSQL如何帮助企业构建数据中台】

直播回看点我 本周我们邀请了圈内大神 祝威廉 给群内的同学做直播分享 祝威廉,资深数据架构,11年研发经验。同时维护和开发多个开源项目。擅长大数据/AI领域的一些思路和工具。现专注于构建集大数据和机器学习于一体的综合性平台,降低AI落地成本相关工作上。 本次分享中,分享者会阐述他心目中的数据中台的样子,并且介绍如何基于MLSQL完成数据中台的构建。此外,分享者会也会介绍MLSQL是如何基于Spark来完成这些扩展的,重要的技术点有: 如何扩展Spark SQL使其成为一个数据专用的语言MLSQL. 如何实现对各种数据源譬如HDFS/ES/MySQL/MongoDB等细化到列的权限控制。 如何构建二层RPC通讯强化对Executor的控制,实现对机器学习更好的支持。 如何支持兼容多版本Spark 如何避免机器学习中预测阶段无法复用训练时的代码和数据

相关文章

发表评论

资源下载

更多资源
Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

Nacos

Nacos

Nacos /nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service 的首字母简称,一个易于构建 AI Agent 应用的动态服务发现、配置管理和AI智能体管理平台。Nacos 致力于帮助您发现、配置和管理微服务及AI智能体应用。Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现、服务配置、服务元数据、流量管理。Nacos 帮助您更敏捷和容易地构建、交付和管理微服务平台。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

用户登录
用户注册