MaxCompute如何对SQL查询结果实现分页获取
由于MaxCompute SQL本身不提供类似数据库的select * from table limit x offset y的分页查询逻辑。但是有很多用户希望在一定场景下能够使用获取类似数据库分页的逻辑,对查询结果进行分页/分批获取结果,本文将介绍几种方法,来实现上述场景。
1. 借助row_number()函数作为递增唯一标识进行过滤查询
select * from (select row_number() over() as row_id,* from orders_delta)t where row_id between 10 and 20;
通过row_number()对数据进行排序及唯一标识编号,然后根据该标识选取每次查询的分页范围。
2. 利用Java SDK的InstanceTunnel在下载结果时进

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
-
上一篇
Hadoop大数据平台实战(02):HBase vs. Hive vs. Impala 对比
Hadoop大数据平台中非常重要的三个技术:HBase vs. Hive vs. Impala。他们之间的关系和区别。 Apache™Hadoop是目前最流行的开源大数据平台,核心组件使用Java语言开发。 Apache Hadoop软件库是一个框架,允许使用简单的编程模型跨计算机集群分布式处理大型数据集。 它旨在从单个服务器扩展到数千台计算机,每台计算机都提供本地计算和存储。 该库本身不是依靠硬件来提供高可用性,而是设计用于检测和处理应用层的故障,从而在计算机集群之上提供高可用性服务,每个计算机都可能容易出现故障。 1)Hadoop:最流行的开源大数据平台,主要框架使用Java开发。 2)HBase:面向列的开源NoSQL分布式数据库,基于HDFS,起源于谷歌的论文BigTable。 3)Hive:开源分布式数据仓库工具,至于类SQL语法
-
下一篇
如何从根源上解决 HDFS 小文件问题
我们知道,HDFS 被设计成存储大规模的数据集,我们可以在 HDFS 上存储 TB 甚至 PB 级别的海量数据。而这些数据的元数据(比如文件由哪些块组成、这些块分别存储在哪些节点上)全部都是由 NameNode 节点维护,为了达到高效的访问, NameNode 在启动的时候会将这些元数据全部加载到内存中。而 HDFS 中的每一个文件、目录以及文件块,在 NameNode 内存都会有记录,每一条信息大约占用150字节的内存空间。由此可见,HDFS 上存在大量的小文件(这里说的小文件是指文件大小要比一个 HDFS 块大小(在 Hadoop1.x 的时候默认块大小64M,可以通过 dfs.blocksize 来设置;但是到了 Hadoop 2.x 的时候默认块大小为128MB了,可以通过 dfs.block.size 设置) 小得多的文
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- 2048小游戏-低调大师作品
- Linux系统CentOS6、CentOS7手动修改IP地址
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- SpringBoot2全家桶,快速入门学习开发网站教程
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- SpringBoot2编写第一个Controller,响应你的http请求并返回结果
- SpringBoot2整合Redis,开启缓存,提高访问速度
- MySQL8.0.19开启GTID主从同步CentOS8
- SpringBoot2更换Tomcat为Jetty,小型站点的福音