首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/692877

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

使用HGraphDB进行二度好友推荐

业务场景 某社交软件,需要基于用户的好友关系向用户做二度人脉的推荐。系统中保存的关系有两种,一种是A用户的通讯录中保存了B用户的电话号码,另一种是A用户在app上面关注了B用户。以下图所示的关系为例: 张三和王五,李四,赵六是好友,我们需要向张三推荐孙八、杨九和钱七。 购买HGraphDB服务 在这个例子中,我们使用HGraphDB来实现二度好友推荐的需求。HGaphDB是阿里云HBase产品提供的图存储引擎,基于Apache Tinkerpop栈构建,并使用Gremlin语言进行遍历,更新和查询。HGaphDB图数据库适用于存储、管理、查询复杂并且高度连接的数据,图库的结构特别适合发现大数据集下数据之间的共性和特性,特别善于释放蕴含在数据关系之间的巨大价值。HGaphDB引擎本身并不额外收费,仅收取云hbase费用。可以参考HGaphD

【云周刊】第209期:Perseus(擎天):统一深度学习分布式通信框架 [弹性人工智能]

本期头条 Perseus(擎天):统一深度学习分布式通信框架 弹性人工智能 近些年来,深度学习在图像识别,自然语言处理等领域快速发展。各种网络模型,需要越来越多的计算力来进行训练。以典型的中等规模的图像分类网络Resnet50为例,基准的训练精度为Top-1 76%, Top-5 为 93%,为达到此精度,一般需要将整个Imagenet数据集的128万张图片,训练90次(90 epoch). 这样的计算量,以单张P100的计算力需要6天才能训练完毕,而最近的NLP 领域取得突破的Bert 模型以及GPT-2的预训练,如果在单机上进行则需要数月甚至按年计。因此在实际的生产环境,引入分布式训练,大大降低模型训练所需的时间,提高模型迭代的速度成为紧迫的需求。基于这样的需求,各大深度学习框架,基本都实现了分布式训练的支持。点击查看 Rocket

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

Nacos

Nacos

Nacos /nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service 的首字母简称,一个易于构建 AI Agent 应用的动态服务发现、配置管理和AI智能体管理平台。Nacos 致力于帮助您发现、配置和管理微服务及AI智能体应用。Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现、服务配置、服务元数据、流量管理。Nacos 帮助您更敏捷和容易地构建、交付和管理微服务平台。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。