Spark 读取 Hbase 优化 --手动划分 region 提高并行数
一. Hbase 的 region 我们先简单介绍下 Hbase 的 架构和 region : 从物理集群的角度看,Hbase 集群中,由一个 Hmaster 管理多个 HRegionServer,其中每个 HRegionServer 都对应一台物理机器,一台 HRegionServer 服务器上又可以有多个 Hregion(以下简称 region)。要读取一个数据的时候,首先要先找到存放这个数据的 region。而 Spark 在读取 Hbase 的时候,读取的 Rdd 会根据 Hbase 的 region 数量划分 stage。所以当 region 存储设置得比较大导致 region 比较少,而 spark 的 cpu core 又比较多的时候,就会出现无法充分利用 spark 集群所有 cpu core 的情况。 我们再从逻辑表结构的角度看看 Hbase 表和 region 的关系。 Hbase是通过把数据分配到一定数量的region来达到负载均衡的。一个table会被分配到一个或多个region中,这些region会被分配到一个或者多个regionServer中。在自动spli...
