Spark中Task,Partition,RDD、节点数、Executor数、core数目的关系
梳理一下Spark中关于并发度涉及的几个概念File,Block,Split,Task,Partition,RDD以及节点数、Executor数、core数目的关系。 输入可能以多个文件的形式存储在HDFS上,每个File都包含了很多块,称为Block。 当Spark读取这些文件作为输入时,会根据具体数据格式对应的InputFormat进行解析,一般是将若干个Block合并成一个输入分片,称为InputSplit,注意InputSplit不能跨越文件。 随后将为这些输入分片生成具体的Task。InputSplit与Task是一一对应的关系。 随后这些具体的Task每个都会被分配到集群上的某个节点的某个Executor去执行。 每个节点可以起一个或多个Executor。 每个Executor由若干core组成,每个Executor的每个core一次只能执行一个Task。 每个Task执行的结果就是生成了目标RDD的一个partiton。 注意:这里的core是虚拟的core而不是机器的物理CPU核,可以理解为就是Executor的一个工作线程。 而 Task被执行的并发度 = Execu...
