首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/371264

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

Spark RDD概念学习系列之Spark的算子的分类(十一)

Spark的算子的分类  从大方向来说Spark 算子大致可以分为以下两类: 1Transformation 变换/转换算子这种变换并不触发提交作业完成作业中间过程处理。  Transformation 操作是延迟计算的也就是说从一个RDD 转换生成另一个 RDD 的转换操作不是马上执行需要等到有 Action 操作的时候才会真正触发运算。 2Action 行动算子这类算子会触发 SparkContext 提交 Job 作业。 Action 算子会触发 Spark 提交作业Job并将数据输出 Spark系统。 从小方向来说Spark 算子大致可以分为以下三类: 1Value数据类型的Transformation算子这种变换并不触发提交作业针对处理的数据项是Value型的数据。 2Key-Value数据类型的Transfromation算子这种变换并不触发提交作业针对处理的数据项是Key-Value型的数据对。 3Action算子这类算子会触发SparkContext提交Job作业。 1Value数据类型的Transformation算子 一、输入分区与输出分区一对一...

Spark RDD概念学习系列之RDD的checkpoint(九)

RDD的检查点 首先,要清楚。为什么spark要引入检查点机制?引入RDD的检查点?   答:如果缓存丢失了,则需要重新计算。如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容忽视的。为了避免缓存丢失重新计算带来的开销,Spark又引入检查点机制。 RDD的缓存能够在第一次计算完成后,将计算结果保存到内存、本地文件系统或者Tachyon(分布式内存文件系统)中。通过缓存,Spark避免了RDD上的重复计算,能够极大地提升计算速度。但是,如果缓存丢失了,则需要重新计算。如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容忽视的。为了避免缓存丢失重新计算带来的开销,Spark又引入检查点(checkpoint)机制。 RDD的缓存和RDD的checkpoint的区别 RDD的缓存是在计算结束后,直接将计算结果通过用户定义的存储级别(存储级别定义了缓存存储的介质,现在支持内存、本地文件系统和Tachyon)写入不同的介质。 而RDD的检查点不同,它是在计算完成后,重新建立一个Job来计算。 为了避免重复计算,推荐先...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

Apache Tomcat

Apache Tomcat

Tomcat是Apache 软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache、Sun 和其他一些公司及个人共同开发而成。因为Tomcat 技术先进、性能稳定,而且免费,因而深受Java 爱好者的喜爱并得到了部分软件开发商的认可,成为目前比较流行的Web 应用服务器。

JDK

JDK

JDK是 Java 语言的软件开发工具包,主要用于移动设备、嵌入式设备上的java应用程序。JDK是整个java开发的核心,它包含了JAVA的运行环境(JVM+Java系统类库)和JAVA工具。