Spark核心—RDD初探
本文目的 最近在使用Spark进行数据清理的相关工作,初次使用Spark时,遇到了一些挑(da)战(ken)。感觉需要记录点什么,才对得起自己。下面的内容主要是关于Spark核心—RDD的相关的使用经验和原理介绍,作为个人备忘,也希望对读者有用。 为什么选择Spark 原因如下 代码复用:使用Scala高级语言操作Spark,灵活方便,面向对象,函数编程的语言特性可以全部拿来。Scala基本上可以无缝集成java及其相关库。最重要的是,可以封装组件,沉淀工作,提高工作效率。之前用hive + python的方式处理数据,每个处理单元是python文件,数据处理单元之间的交互是基于数据仓库的表格,十分不灵活,很难沉淀常见的工作。 机器学习:Spark可以实现迭代逻辑,可以轻松实现一些常见的机器学习算法,而且spark自带机器学习库mllib和图算法包graphyx,为后面的数据挖掘应用提供了想象空间。 Spark计算性能虽然明显比Hadoop高效,但并不是我们技术选型的主要原因,因为现有基于Hadoop +hive的计算性能已经足够了。 基石哥—RDD 整个s...
