实施数据湖泊之前请先“试水”
现今,数据湖泊在IT行业掀起了波澜。数据湖泊是将数据存储与数据管理关联,提供关于数据的分析功能——这种功能通常是其他分析系统的独立功能,如数据仓库或数据集市,作为数据梳理流程的一部分。 例如,数据仓库的提取、转化与加载预处理器将消费日志,这些日志记录了某个系统到达或插入某“操作数据存储”的时间。 但现今产业中,数据湖泊似乎至少有两个定义。一是源于存储公司,认为数据湖泊是磁盘存储基础设施,用于源数据的存储。另一个,主要由市场驱动,混合许多通常未混合的数据。根据我的定义,没有产商在销售全扩展的数据湖泊——相反,人们利用Hadoop来混合数据并自主研发的工具来访问数据。 作为初始供应商向现实世界实验抛出的炒作课题,用户发现数据中心集市的最佳实践并不适用于数据湖泊。为避免早期用户的错误,需要专注于数据湖泊的温和实现,而不是超大规模。 以下是在数据湖泊工作中的最佳实践。 请记住数据湖泊适用于探索 数据湖泊实现应该是实现企业扩展某个已存在分析的探索方式。数据湖泊中增加的数据类型来大部分来自于实时数据——例如,用户事务日志——实时分析系统一般不会提供长周期的分析功能。大多数现有的分析工具不足以提供应...

