《Spark与Hadoop大数据分析》一一3.5 持久化与缓存
本节书摘来自华章计算机《Spark与Hadoop大数据分析》一书中的第3章,第3.5节,作者:文卡特·安卡姆(Venkat Ankam) 更多章节内容可以访问云栖社区“华章计算机”公众号查看。
3.5 持久化与缓存
Spark 的一个独特功能是在内存中持久化 RDD。你可以使用 persist 或 cache 变换来持久化 RDD,如下所示:
上述两个语句都是相同的,并且会在 MEMORY_ONLY 存储级别缓存数据。它们的区别在于:cache 是指 MEMORY_ONLY 存储级别,而 persist 可以根据需要选择不同的存储级别,如下表所示。当第一次使用动作来进行计算时,它将保存在节点上的内存中。了解缓存 RDD 的百分比及其大小的最简单方法是检查管理界面中的 Storage 选项卡,如图3-11 所示:
图3-11 缓存的 RDD
