实时股票预测的开源参考结构
有这样一个传说,将人工智能和机器学习算法用于服务器农场后,你就可以搬家到夏威夷,在让机器交易的同时你终日躺在沙滩上享受生活。但是,问题在于交易市场是不断变化的:经济力量,新产品,竞争,世界事件,法规,甚至推特都是因素。虽然没有免费的午餐,在开放源码机器学习算法和数据分析平台的帮助下,公司仍然可以得到一个“更好,更健康,更便宜的午餐”。在股票市场中,查看历史股票价格并尝试用不同的模型来预测未来是一种常见的做法。
虽然这篇文章不能提供股票分析的细节,但它提出了一种用于解决大规模实时数据分析问题的方法,在一个可高度扩展和延伸性的参考架构下使用开放源代码工具。下面的架构专注于金融交易,但也适用于几乎任何一个行业的实时使用需求。关于这篇文章所讨论的构架的更多信息也可在网上通过Linux基金会,SlideShare,YouTube,和Pivot