首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/96570

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

Apache Spark机器学习.2.2 数据清洗

2.2 数据清洗 在本节中,我们将回顾一些Spark平台上的数据清洗方法,重点关注数据不完备性。然后,我们将讨论一些Spark数据清洗方面的特殊特征,以及一些基于Spark平台更加容易的数据清洗解决方案。 学习完本节,我们将能够完成数据清洗,并为机器学习准备好数据集。 2.2.1 处理数据不完备性 对于机器学习,数据越多越好。然而,通常数据越多,“脏数据”也会越多——这意味着会有更多的数据清洗工作。 数据质量控制可能会有许多问题需要处理,有些问题可能很简单,如数据输入错误或者数据复制。原则上,解决他们的方法是类似的——例如,利用数据逻辑来实现探索和获取项目的本质知识,利用分析逻辑来纠正他们。为此,在本节中,我们将重点关注缺失值处理,以便说明在这个主题上Spark的使用方法。数据清洗涵盖了数据的准确性、完整性、独特性、时效性和一致性。 虽然听起

Apache Spark机器学习.2.3 一致性匹配

2.3 一致性匹配 本节,我们将讨论一个重要的数据准备主题,就是一致性匹配和相关解决方案。我们将讨论几个使用Spark解决一致性问题的特征和使用Spark的数据匹配解决方案。 阅读本节以后,读者可以使用Spark解决一些常见的数据一致性问题。 2.3.1 一致性问题 我们经常需要在数据准备过程中处理一些属于同一个人或单元的数据元素,但这些元素并不相似。例如,我们有一些Larry Z.的购物数据和L. Zhang的网页活动数据。Larry Z.和L. Zhang是否是同一个人?数据中是否有很多一致性的变化。 由于实体变异的类型非常普遍,可能引起的原因有:重复、错误、名字变化和有意的别名等,使得对象匹配成为机器学习数据准备中的一个巨大挑战。有时,完成匹配或寻找关联都非常困难,而且这些工作非常耗时。然而,任何种类的错误匹配将产生许多错误,数据的不

相关文章

发表评论

资源下载

更多资源
腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Nacos

Nacos

Nacos /nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service 的首字母简称,一个易于构建 AI Agent 应用的动态服务发现、配置管理和AI智能体管理平台。Nacos 致力于帮助您发现、配置和管理微服务及AI智能体应用。Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现、服务配置、服务元数据、流量管理。Nacos 帮助您更敏捷和容易地构建、交付和管理微服务平台。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

用户登录
用户注册