首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/680290

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

如何在Kubernetes上部署高可用和可扩展的Elasticsearch?

先决条件 Elasticsearch的基本知识,其Node类型及角色 运行至少有3个节点的Kubernetes集群(至少4Cores 4GB) Kibana的相关知识 部署架构图 Elasticsearch Data Node的Pod被部署为具有Headless Service的StatefulSets,以提供稳定的网络ID。 Elasticsearch Master Node的Pod被部署为具有Headless Service的副本集,这将有助于自动发现。 Elasticsearch Client Node的Pod部署为具有内部服务的副本集,允许访问R/W请求的Data Node。 Kibana和ElasticHQ Pod被部署为副本集,其服务可在Kubernetes集群外部访问,但仍在您的子网内部(除非另有要求,否则不公开)。 为Client Node部署HPA(Horizonal Pod Auto-scaler)以在高负载下实现自动伸缩。 要记住的重要事项: 设置ES_JAVA_OPT环境变量。 设置CLUSTER_NAME环境变量。 为Master Node的部署设置NUMBE...

用Python/Keras/Flask/Docker在Kubernetes上部署深度学习模型

简单到老板也可以亲自部署 这篇博文演示了如何通过Docker和Kubernetes,用Keras部署深度学习模型,并且通过Flask提供REST API服务。 这个模型并不是强壮到可供生产的模型,而是给Kubernetes新手一个尝试的机会。我在Google Cloud上部署了这个模型,而且工作的很好。另外用户可以用同样的步骤重现以上功能。如果用户担心成本,Google提供了大量免费机会,这个演示基本没有花钱。 为什么用Kubernetes来做机器学习和数据科学 Kubernetes以及Cloud Native,正在席卷整个世界,我们已经感受到了。我们正处在一个由AI/Big Data/Cloud驱动的技术风暴中心,Kubernetes也正在加入这个中心。 但是如果从数据科学角度看并没有使用Kubernetes的特殊原因。但是从部署,扩展和管理REST API方面来看,Kubernetes正在实现简易化的特性。 步骤预览 在Google Cloud上创建用户 使用Keras/Flask/Docker搭建一个REST API的机器学习模型服务 用Kubernetes部署上述模型 enjo...

相关文章

发表评论

资源下载

更多资源
Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

Oracle

Oracle

Oracle Database,又名Oracle RDBMS,或简称Oracle。是甲骨文公司的一款关系数据库管理系统。它是在数据库领域一直处于领先地位的产品。可以说Oracle数据库系统是目前世界上流行的关系数据库管理系统,系统可移植性好、使用方便、功能强,适用于各类大、中、小、微机环境。它是一种高效率、可靠性好的、适应高吞吐量的数据库方案。

Apache Tomcat

Apache Tomcat

Tomcat是Apache 软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache、Sun 和其他一些公司及个人共同开发而成。因为Tomcat 技术先进、性能稳定,而且免费,因而深受Java 爱好者的喜爱并得到了部分软件开发商的认可,成为目前比较流行的Web 应用服务器。

Eclipse

Eclipse

Eclipse 是一个开放源代码的、基于Java的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。幸运的是,Eclipse 附带了一个标准的插件集,包括Java开发工具(Java Development Kit,JDK)。