使用scikit-learn解决文本多分类问题(附python演练)
在我们的商业世界中,存在着许多需要对文本进行分类的情况。例如,新闻报道通常按主题进行组织; 内容或产品通常需要按类别打上标签; 根据用户在线上谈论产品或品牌时的文字内容将用户分到不同的群组...... 但是,互联网上的绝大多数文本分类文章和教程都是二文本分类,如垃圾邮件过滤(垃圾邮件与正常邮件),情感分析(正面与负面)。在大多数情况下,我们的现实世界问题要复杂得多。因此,这就是我们今天要做的事情:将消费者在金融方面的投诉分为12个事先定义好的类别。数据可以从data.gov(https://catalog.data.gov/dataset/consumer-complaint-database)下载。 我们使用Python和Jupyter Notebook来开发我们的系统,并用到了Scikit-Learn中的机器学习组件。如果您想看到在PySpark(https://medium.com/@actsusanli/multi-class-text-classification-with-pyspark-7d78d022ed35)上的实现,请阅读下一篇文章。 一、问题描述我们的问题是是文本...