您现在的位置是:首页 > 文章详情

Python中机器学习的特征选择工具

日期:2018-07-14点击:548

212a5e1d3a40607c32d2312deefc15077ce94a08

特征选择,即在数据集中查找和选择最有用的特征的过程,是机器学习的关键步骤。不必要的特征会降低训练速度、模型的可解释性,最重要的是会降低测试集的泛化性能。

我对临时的特征选择方法感到很失望,但是在解决机器学习问题时又反复用到了这些方法,所以就创建了一个关于特征选择的Python类,该类可以在GitHub上找到FeatureSelector包括一些最常见的特征选择方法:

1.高百分比的缺失值特征选择法

2.共线(高度相关)特征选择法

3.树型结构模型中的零重要性特征选择法

4.低重要性特征选择法

5.唯一值特征选择法

在本文中,我将对机器学习数据集的示例使用FeatureSelector。也会介绍该类是如何让我们快速地实现特征选择方法。

完整的代码可以在GitHub上找到,特征选择器还是一个半成品,会根据社区的需求继续改进!

示例数据集

示例中使用

原文链接:https://yq.aliyun.com/articles/610496
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章