数据科学入门丨选Python还是R
对于想入门数据科学的新手来说,选择学Python还是R语言是一个难题,本文对两种语言进行了比较,希望能帮助你做出选择。
我是德勤的数据科学家主管,多年来我一直在使用Python和R语言,并且与Python社区密切合作了15年。本文是我对这两种语言的一些个人看法。
第三种选择
针对这个问题,Studio的首席数据科学家Htley Wickham认为,比起在二者中选其一,更好的选择是让两种语言合作。因此,这也是我提到的第三种选择,我在文本最后部分会探讨。
如何比较R和Python
对于这两种语言,有以下几点值得进行比较:
· 历史:
R和Python的发展历史明显不同,同时有交错的部分。
· 用户群体:
包含许多复杂的社会学人类学因素。
· 性能:
详细比较以及为何难以比较。
· 第三方支持:
模块、代码库、可视化、存储库、组织和开发环境。
· 用例:
根据具体任务和工作类型有不同的选择。
· 是否能同时使用:
在Python中使用R,在R中使用Python。
· 预测:
内部测试。
· 企业和个人偏好:
揭晓最终答案。
历史
简史:
ABC语言 - > Python 问世(1989年由Guido van Rossum创立) - > Python 2(2000年) - > Python 3(2008年)
Fortan语言 - > S语言(贝尔实验室) - > R语言问世(1991年由Ross Ihaka和Robert Gentleman创立) - > R 1.0.0(2000年) - > R 3.0.2(2013年)
用户群体
在比较Python与R的使用群体时,要注意:
只有50%的Python用户在同时使用R。
假设使用R语言的程序员都用R进行相关“科学和数字”研究。可以确定无论程序员的水平如何,这种统计分布都是真实。
这里回到第二个问题,有哪些用户群体。整个科学和数字社区包含几个子群体,当中存在一些重叠。
使用Python或R语言的子群体:
· 深度学习
· 机器学习
· 高级分析
· 预测分析
· 统计
· 探索和数据分析
· 学术科研
· 大量计算研究领域
虽然每个领域几乎都服务于特定群体,但在统计和探索等方面,使用R语言更为普遍。在不久之前进行数据探索时,比起Python,R语言花的时间更少,而且使用Python还需要花时间进行安装。
这一切都被称为Jupyter Notebooks和Anaconda的颠覆性技术所改变。
Jupyter Notebook:增加了在浏览器中编写Python和R代码的能力;
Anaconda:能够轻松安装和管理Python和R。
现在,你可以在友好的环境中启动和运行Python或R,提供开箱即用的报告和分析,这两项技术消除了完成任务和选择喜欢语言间的障碍。Python现在能以独立于平台的方式打包,并且更快地提供快速简单的分析。
社区中影响语言选择的另一个因素是“开源”。不仅仅是开源的库,还有协作社区对开源的影响。讽刺的是,Tensorflow和GNU Scientific Library等开源软件(分别是Apache和GPL)都与Python和R绑定。虽然使用R语言的用户很多,但使用Python的用户中有很多纯粹的Python支持者。另一方面,更多的企业使用R语言,特别是那些有统计学背景的。
最后,关于社区和协作,Github对Python的支持更多。如果看到最近热门的Python包,会发现Tensorflow等项目有超过3.5万的用户收藏。但看到R的热门软件包,Shiny、Stan等的收藏量则低于2千。
性能
这方面不容易进行比较。
原因是需要测试的指标和情况太多。很难在任何一个特定硬件上测试。有些操作通过其中一种语言优化,而不是另一种。
循环
在此之前让我们想想,如何比较Python与R。你真的想在R语言写很多循环吗?毕竟这两种语言的设计意图不太相同。
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "%load_ext rpy2.ipython" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def do_loop(u1):\n", "\n", " # Initialize `usq`\n", " usq = {}\n", "\n", " for i in range(100):\n", " # i-th element of `u1` squared into `i`-th position of `usq`\n", " usq[i] = u1[i] * u1[i]\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "%%R\n", "do_loop <- function(u1) {\n", " \n", " # Initialize `usq`\n", " usq <- 0\n", "\n", " for(i in 1:100) {\n", " # i-th element of `u1` squared into `i`-th position of `usq`\n", " usq[i] <- u1[i]*u1[i]\n", " }\n", "\n", "}" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.58 ms ± 42.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" ] } ], "source": [ "%%timeit -n 1000\n", "%%R\n", "u1 <- rnorm(100)\n", "do_loop(u1)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "36.9 µs ± 5.99 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" ] } ], "source": [ "%%timeit -n 1000\n", "u1 = np.random.randn(100)\n", "do_loop(u1)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }
Python为0.000037秒,R为0.00158秒
包括加载时间和在命令行上运行:R需要0.238秒,Python需要0.147秒。强调,这并不是科学严谨的测试。
测试证明,Python的运行速度明显加快。通常这并没有太大影响。
除了运行速度外,对于数据科学家而言哪种性能更重要?两种语言之所以受欢迎是因为它们能被用作命令语言。例如,在使用Python时大多时候我们都很依赖Pandas。这涉及到每种语言中模块和库,以及其执行方式。
第三方支持
Python有PyPI,R语言有CRAN,两者都有Anaconda。
CRAN使用内置的install.packages命令。目前,CRAN上有大约1.2万个包。其中超过1/2的包都能用于数据科学。
PyPi中包的数量超过前者的10倍,约有14.1万个包。专门用于科学工程的有3700个。其中有些也可以用于科学,但没有被标记。
在两者中都有重复的情况。当搜索“随机森林”时,PyPi中可以得到170个项目,但这些包并不相同。
尽管Python包的数量是R的10倍,但数据科学相关的包的数量大致相同。
运行速度
比较DataFrames和Pandas更有意义。
我们进行了一项实验:比较针对复杂探索任务的执行时间,结果如下:
在大多数任务中Python运行速度更快。
来源:
http://nbviewer.jupyter.org/gist/brianray/4ce15234e6ac2975b335c8d90a4b6882
可以看到,Python + Pandas比原生的R语言DataFrames更快。注意,这并不意味着Python运行更快,Pandas 是基于Numpy用C语言编写的。
可视化
这里将ggplot2与matplotlib进行比较。
matplotlib是由John D. Hunter编写的,他是我在Python社区中最敬重的人之一,他也是教会我使用Python的人。
Matplotlib虽然不易学习但能进行定制和扩展。ggplot难以进行定制,有些人认为它更难学。
如果你喜欢漂亮的图表,而且无需自定义,那么R是不错的选择。如果你要做更多的事情,那么Matplotlib甚至交互式散景都不错。同样,R的ShinnyR能够增加交互性。
是否能同时使用
可能你会问,为什么不能同时使用Python和R语言?
以下情况你可以同时使用这两种语言:
· 公司或组织允许;
· 两种都能在你的编程环境中轻松设置和维护;
· 你的代码不需要进入另一个系统;
· 不会给合作的人带来麻烦和困扰。
一起使用两种语言的方法是:
· Python提供给R的包:如rpy2、pyRserve、Rpython等;
· R也有相对的包:rPython、PythonInR、reticulate、rJython,SnakeCharmR、XRPython
· 使用Jupyter,同时使用两者,例子如下:
之后可以传递pandas的数据框,接着通过rpy2自动转换为R的数据框,并用“-i df”转换:
来源:
http://nbviewer.jupyter.org/gist/brianray/734bd54f468d9a6db9171b2cfc98405a
预测
Kaggle上有人对开发者使用R还是Python写了一个Kernel。他根据数据发现以下有趣的结果:
· 如果你打算明年转向Linux,则更可能是Python用户;
· 如果你研究统计数据,则更可能使用R;如果研究计算机科学,则更可能使用Python;
· 如果你还年轻(18-24岁),则更可能是Python用户;
· 如果你参加编程比赛,则更可能是Python用户;
· 如果你明年想使用Android,则更可能是Python用户;
· 如果你想在明年学习SQL,则更可能是R用户;
· 如果你使用MS office,则更可能是R用户;
· 如果你想在明年使用Rasperry Pi,则更可能是Python用户;
· 如果你是全日制学生,则更可能是Python用户;
· 如果你使用的敏捷方法(Agile methodology),则更可能是Python用户;
· 如果对待人工智能,比起兴奋你更持担心态度,则更可能是R用户。
企业和个人偏好
当我与Googler和Stack Overflow的大神级人物Alex Martelli交流时,他向我解释了为什么Google最开始只官方支持少数几种语言。即使是在Google相对开发的环境中,也存在一些限制和偏好,其他企业也是如此。
除了企业偏好,企业中第一个使用某种语言的人也会起到决定性作用。第一个在德勤使用R的人他目前仍在公司工作,目前担任首席数据科学家。我的建议是,选择你喜欢的语言,热爱你选择的语言,起到领导作用,并热爱你的事业。
当你在研究某些重要的内容时,犯错是难以避免的。然而,每个精心设计的数据科学项目都为数据科学家留有一些空间,让他们进行实验和学习。重要的是保持开放的心态,拥抱多样性。
最后就我个人而言,我主要使用Python,之后我期待学习更多R的内容。
原文链接:
https://blog.usejournal.com/python-vs-and-r-for-data-science-833b48ccc91d
原文发布时间为:2018-07-09
本文作者:Brian Ray
本文来自云栖社区合作伙伴“CDA数据分析师 ”,了解相关信息可以关注“CDA数据分析师”

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
在Firefox 58中,WebAssembly组件性能提升了10倍
Mozilla在Firefox 58中为WebAssembly(WASM)组件推出了一套双层编译系统,号称解析和编译WASM代码的速度达到30-60MB/s,足够在有线网络中实现实时编译。基准测试表明,新版的性能比旧版提高了10倍,比Chrome快10倍以上。 在Mozilla Hacks博客的一篇文章中,Lin Clark列举了一些测出的性能数据: 在一部台式机上,我们编译WebAssembly代码的速度高达30-60MB每秒,比网络传输数据包的速度都快。 使用Firefox Nightly或Beta的用户可以在自己的设备上体验这一进步。即使在性能一般的移动设备上编译速度也有8MB/s,快过绝大多数移动网络的平均下载带宽。 独立测试人员复现了类似的测试结果。 Reddit用户a_potato_is_missing用Luke Wagner的tanks编译速度测试做了对比,他使用一台安装了安卓系统的华为P10 Lite进行测试,结果显示,在Firefox v57中的编译速度为1.7MB/s,换成Firefox v58就提升到了11.8MB/s。 Windows 10桌面平台的测试中,编译...
- 下一篇
Dubbo 同步、异步调用的几种方式
我们知道,Dubbo 缺省协议采用单一长连接,底层实现是 Netty 的 NIO 异步通讯机制;基于这种机制,Dubbo 实现了以下几种调用方式: 同步调用 异步调用 参数回调 事件通知 同步调用 同步调用是一种阻塞式的调用方式,即 Consumer 端代码一直阻塞等待,直到 Provider 端返回为止; 通常,一个典型的同步调用过程如下: Consumer 业务线程调用远程接口,向 Provider 发送请求,同时当前线程处于阻塞状态; Provider 接到 Consumer 的请求后,开始处理请求,将结果返回给 Consumer; Consumer 收到结果后,当前线程继续往后执行。 这里有 2 个问题: Consumer 业务线程是怎么进入阻塞状态的? Consumer 收到结果后,如果唤醒业务线程往后执行的? 其实,Dubbo 的底层 IO 操作都是异步的。Consumer 端发起调用后,得到一个 Future 对象。对于同步调用,业务线程通过Future#get(timeout),阻塞等待 Provider 端将结果返回;timeout则是 Consumer 端定义的超时...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Red5直播服务器,属于Java语言的直播服务器
- CentOS6,7,8上安装Nginx,支持https2.0的开启
- CentOS7设置SWAP分区,小内存服务器的救世主
- SpringBoot2编写第一个Controller,响应你的http请求并返回结果
- SpringBoot2全家桶,快速入门学习开发网站教程
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- CentOS7编译安装Cmake3.16.3,解决mysql等软件编译问题
- CentOS7编译安装Gcc9.2.0,解决mysql等软件编译问题
- CentOS7安装Docker,走上虚拟化容器引擎之路
- Jdk安装(Linux,MacOS,Windows),包含三大操作系统的最全安装