您现在的位置是:首页 > 文章详情

机器学习实战之线性回归

日期:2018-07-01点击:555

线性回归原理与推导

如图所示,这时一组二维的数据,我们先想想如何通过一条直线较好的拟合这些散点了?直白的说:尽量让拟合的直线穿过这些散点(这些点离拟合直线很近)。

image

目标函数

要使这些点离拟合直线很近,我们需要用数学公式来表示。首先,我们要求的直线公式为:Y = XTw。我们这里要求的就是这个w向量(类似于logistic回归)。误差最小,也就是预测值y和真实值的y的差值小,我们这里采用平方误差:

image

求解

我们所需要做的就是让这个平方误差最小即可,那就对w求导,最后w的计算公式为:

image

我们称这个方法为OLS,也就是“普通最小二乘法”

线性回归实践

数据情况

我们首先读入数据并用matplotlib库来显示这些数据。

def loadDataSet(filename): numFeat = len(open(filename).readline().
原文链接:https://yq.aliyun.com/articles/604293
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章