浅谈影响推荐系统效果的一些因素
在一个网站或者app中,推荐系统通常会和整个大系统的多个方面有交互,推荐系统本身也有很多的组成部分,再加上整个系统所处的大环境,综合起来会有很多因素影响着一个推荐系统最终效果的好坏,这里的效果指的是包括准确率、召回率、多样性等等指标在内的一个整体整体效果,不做具体区分。在这里我们试对其中一些主要的因素做一讨论。需要指出的是,这些因素里面并不是所有的我们都可以左右,但是了解它们究竟是什么对我们开发和优化系统还是非常有用的。 用户因素 与广告系统需要同时面对用户和广告主不同,推荐系统的服务对象只有一个,那就是用户,所以用户的因素很大程度会影响系统的效果。具体来讲,系统中新用户和老用户的比例可以说是对效果影响最大的因素之一。大家知道推荐系统是高度依赖用户行为的,而对于无任何行为或者行为非常少的新用户,效果肯定是不会太好的,所以整个系统中新用户的比例越高,系统的整体表现就会越差。 这就是一个典型的推荐系统本身无法左右的因素,而是需要整个系统共同努力来解决。对于这个问题,有两种解决思路:一种是努力优化推荐系统的冷启动算法,这种方法肯定会有效,但是其天花板也是非常低的;而另一种方法,是努力将平台上...