首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/578739

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

【Spark Summit East 2017】Spark与在线分析

更多精彩内容参见云栖社区大数据频道https://yq.aliyun.com/big-data;此外,通过Maxcompute及其配套产品,低廉的大数据分析仅需几步,详情访问https://www.aliyun.com/product/odps。 本讲义出自Shubham Chopra在Spark Summit East 2017上的演讲,主要介绍了Spark设计初衷是作为批处理分析系统,通过缓存RDD对于迭代处理相同数据的任务进行了加速,这种模式也适用于在线分析,本次演讲中,Shubham Chopra试图定义失效能够导致大规模命中在线查询性能和可能的解决方案的特殊区域。

20【在线日志分析】之记录一次Spark Streaming+Spark SQL的数据倾斜

1.现象 三台机器都有产生executor,每台都会产生tasks,但是其中只有一台的task有input数据,其他机器的tasks都没有数据。 2.猜想 2.1是不是数据倾斜? 是 2.2是数据量过大,group by时,导致key分布不均? 比如key1 有98万,key2有2万,那么shuffle时,肯定数据倾斜。但是我刚开始数据量不是很大,所以pass (就算数据量大,也很简单处理,一般处理时key加上随机前缀数) 2.3是不是数据量太少 不够分区的? 也怀疑过,不过还没去验证 2.4 flume流到kafka,是snappy压缩格式,而spark作为kafka的消费者,虽然能够自动识别压缩格式,但是这种snappy格式不支持切分 也怀疑过,不过还没去修改支持spilt的压缩格式,也还没去验证 2.5 spark streaming分区数目是有谁决定的? 使用direct这种模式是由kafka的分区数目决定, 使用receiver这种模式由流的数目决定也就是由receiver数目决定。 3.修改分区数 [root@sht-sgmhadoopdn-02 kafka]#bin/ka...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

Sublime Text

Sublime Text

Sublime Text具有漂亮的用户界面和强大的功能,例如代码缩略图,Python的插件,代码段等。还可自定义键绑定,菜单和工具栏。Sublime Text 的主要功能包括:拼写检查,书签,完整的 Python API , Goto 功能,即时项目切换,多选择,多窗口等等。Sublime Text 是一个跨平台的编辑器,同时支持Windows、Linux、Mac OS X等操作系统。

用户登录
用户注册