首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/60252

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

ElasticSearch Aggregations 分析

承接上篇文章 ElasticSearch Rest/RPC 接口解析,这篇文章我们重点分析让ES步入数据分析领域的Aggregation相关的功能和设计。 前言 我记得有一次到一家公司做内部分享,然后有研发问我,即席分析这块,他们用ES遇到一些问题。我当时直接就否了,我说ES还是个全文检索引擎,如果要做分析,还是应该用Impala,Phenix等这种主打分析的产品。随着ES的发展,我现在对它的看法,也有了比较大的变化。而且我认为ES+Spark SQL组合可以很好的增强即席分析能够处理的数据规模,并且能够实现复杂的逻辑,获得较好的易用性。 需要说明的是,我对这块现阶段的理解也还是比较浅。问题肯定有不少,欢迎指正。 Aggregations的基础 Lucene 有三个比较核心的概念: 倒排索引 fieldData/docValue Collector 倒排索引不用我讲了,就是term -> doclist的映射。 fieldData/docValue 你可以简单理解为列式存储,索引文件的所有文档的某个字段会被单独存储起来。 对于这块,Lucene 经历了两阶段的发展。第一阶段是fi...

SparkES 多维分析引擎设计

设计动机 ElasticSearch 毫秒级的查询响应时间还是很惊艳的。其优点有: 优秀的全文检索能力 高效的列式存储与查询能力 数据分布式存储(Shard 分片) 其列式存储可以有效的支持高效的聚合类查询,譬如groupBy等操作,分布式存储则提升了处理的数据规模。 相应的也存在一些缺点: 缺乏优秀的SQL支持 缺乏水平扩展的Reduce(Merge)能力,现阶段的实现局限在单机 JSON格式的查询语言,缺乏编程能力,难以实现非常复杂的数据加工,自定义函数(类似Hive的UDF等) Spark 作为一个计算引擎,可以克服ES存在的这些缺点: 良好的SQL支持 强大的计算引擎,可以进行分布式Reduce 支持自定义编程(采用原生API或者编写UDF等函数对SQL做增强) 所以在构建即席多维查询系统时,Spark 可以和ES取得良好的互补效果。通过ES的列式存储特性,我们可以非常快的过滤出数据,并且支持全文检索,之后这些过滤后的数据从各个Shard 进入Spark,Spark分布式的进行Reduce/Merge操作,并且做一些更高层的工作,最后输出给用户。 通常而言,结构化的数据结构可以...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

用户登录
用户注册