首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/65415

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

大数据基础知识问答----spark篇,大数据生态圈

Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapreduce算法实现的分布式计算,拥有HadoopMapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。 2.Spark与Hadoop的对比(Spark的优势) 1、Spark的中间数据放到内存中,对于迭代运算效率更高 2、Spark比Hadoop更通用 3、Spark提供了统一的编程接口 4、容错性– 在分布式数据集计算时通过checkpoint来实现容错 5、可用性– Spark通过提供丰富的Scala, Java,Python API及交互式Shell来提高可用性 3.Spark有那些组件 1、Spark Streaming:支持高吞吐量、支持容错的实时流数据处理 2、Spark SQL, Data frames: 结构化数据查询 3、...

Spark企业级应用开发和调优

1.Spark企业级应用开发和调优 Spark项目编程优化历程记录,主要介绍了Spark企业级别的开发过程中面临的问题和调优方法。包含合理分配分片,避免计算中间结果(大数据量)的collect,合理使用map,优化广播变量等操作,降低网络和磁盘IO,提高计算效率。 2.核心技术优化方法对比 首先如下图(2.1),Spark应用开发在集群(伪分布式)中的记录,每一种不同颜色的折线代表一个分布式机器 最终,图4中四条折线并行达到峰值(即CPU100%).降低了处理时间,增大了处理效率. 2.1.重要并行计算模型构建对比 图1 传统方式计算模型在模拟集群计算概览图 图2 spark并行模型1在模拟集群并行计算概览图 图3 spark并行模型2在模拟集群并行计算概览图 图4 spark并行模型3在模拟集群并行计算概览图 2.2.Spark优化技术要点 2.2.1.如何构建一个合理的弹性分布式数据集(RDD) Spark之所以快速,一是分而治之,二是允许基于内存计算. 第一步,常用的构建一个分布式数据方式: 方式一:基于文件读取 textFile(name, minPartitions=None...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Nacos

Nacos

Nacos /nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service 的首字母简称,一个易于构建 AI Agent 应用的动态服务发现、配置管理和AI智能体管理平台。Nacos 致力于帮助您发现、配置和管理微服务及AI智能体应用。Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现、服务配置、服务元数据、流量管理。Nacos 帮助您更敏捷和容易地构建、交付和管理微服务平台。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

用户登录
用户注册