spark-2.0-从RDD到DataSet

DataSet API和DataFrame两者结合起来,DataSet中许多的API模仿了RDD的API,实现不太一样,但是基于RDD的代码很容易移植过来。
spark未来基本是要在DataSet上扩展了,因为spark基于spark core关注的东西很多,整合内部代码是必然的。
1、加载文件

val rdd = sparkContext.textFile("./data.txt")
val ds = sparkSession.read.text("./data.txt")

2、计算总数

rdd.count()

ds.count()

3、wordcount实例

val wordsRDD = rdd.flatMap(value => value.split("\\s+"))
val wordsPairs = wordsRDD.map(word => (word,1))
val wordCount = wordsPairs.reduceByKey(_+_)
import sparkSession.implicits._
val wordsDs = ds.flatMap(value => value.split("\\s+"))
val wordsPairDs = wordsDs.groupByKey(value => value)
val wordCounts = wordsPairDs.count()

4、缓存

rdd.cache()

ds.cache()

5、过滤

val filterRDD = wordsRDD.filter(value => value=="hello")

val filterDs = wordsDs.filter(value => value = "hello")

6、map partition

val mapPartitionsRDD = rdd.mapPartitions(iterator => List(iterator.count(value=>true)).iterator)

val mapPartitionsDs = ds.mapPartitions(iterator => List(iterator.count(value=>true)).iterator)

7 、reduceByKey

val reduceCountByRDD = wordsPair.reduceByKey(_+_)

val reduceCountByDs = wordsPairDs.mapGroups((key,values) =>(key,values.length))

8、RDD和 DataSet互换

val dsToRDD = ds.rdd
val rddStringToRowRDD = rdd.map(value => Row(value))
val dfschema = StructType(Array(StructField("value",StringType)))
val rddToDF = sparkSession.createDataFrame(rddStringToRowRDD,dfschema)
val rDDToDataSet = rddToDF.as[String]

9、double

val doubleRDD = sparkContext.makeRDD(List(1.0,5.0,8.9,9.0))
val rddSum =doubleRDD.sum()
val rddMean = doubleRDD.mean()
val rowRDD = doubleRDD.map(value => Row.fromSeq(List(value)))
val schema = StructType(Array(StructField("value",DoubleType)))
val doubleDS = sparkSession.createDataFrame(rowRDD,schema)
import org.apache.spark.sql.functions._
doubleDS.agg(sum("value"))
doubleDS.agg(mean("value"))

10、reduce

val rddReduce = doubleRDD.reduce((a,b) => a +b)
val dsReduce = doubleDS.reduce((row1,row2) =>Row(row1.getDouble(0) + row2.getDouble(0)))

code

import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructType}
import org.apache.spark.sql.{Row, SparkSession}

object RDDToDataSet {

  def main(args: Array[String]) {

    val sparkSession = SparkSession.builder.master("local")
                                           .appName("example")
                                           .getOrCreate()
    val sparkContext = sparkSession.sparkContext
    //read data from text file
    val rdd = sparkContext.textFile("src/main/resources/data.txt")
    val ds = sparkSession.read.text("src/main/resources/data.txt")

    // do count
    println("count ")
    println(rdd.count())
    println(ds.count())

    // wordcount
    println(" wordcount ")

    val wordsRDD = rdd.flatMap(value => value.split("\\s+"))
    val wordsPair = wordsRDD.map(word => (word,1))
    val wordCount = wordsPair.reduceByKey(_+_)
    println(wordCount.collect.toList)

    import sparkSession.implicits._
    val wordsDs = ds.flatMap(value => value.split("\\s+"))
    val wordsPairDs = wordsDs.groupByKey(value => value)
    val wordCountDs = wordsPairDs.count
    wordCountDs.show()

    //cache
    rdd.cache()
    ds.cache()

    //filter

    val filteredRDD = wordsRDD.filter(value => value =="hello")
    println(filteredRDD.collect().toList)

    val filteredDS = wordsDs.filter(value => value =="hello")
    filteredDS.show()


    //map partitions

    val mapPartitionsRDD = rdd.mapPartitions(iterator => 
    List(iterator.count(value => true)).iterator)
    println(s" the count each partition is ${mapPartitionsRDD.collect().toList}")

    val mapPartitionsDs = ds.mapPartitions(iterator => 
    List(iterator.count(value => true)).iterator)
    mapPartitionsDs.show()

    //converting to each other
    val dsToRDD = ds.rdd
    println(dsToRDD.collect())

    val rddStringToRowRDD = rdd.map(value => Row(value))
    val dfschema = StructType(Array(StructField("value",StringType)))
    val rddToDF = sparkSession.createDataFrame(rddStringToRowRDD,dfschema)
    val rDDToDataSet = rddToDF.as[String]
    rDDToDataSet.show()

    // double based operation

    val doubleRDD = sparkContext.makeRDD(List(1.0,5.0,8.9,9.0))
    val rddSum =doubleRDD.sum()
    val rddMean = doubleRDD.mean()

    println(s"sum is $rddSum")
    println(s"mean is $rddMean")

    val rowRDD = doubleRDD.map(value => Row.fromSeq(List(value)))
    val schema = StructType(Array(StructField("value",DoubleType)))
    val doubleDS = sparkSession.createDataFrame(rowRDD,schema)

    import org.apache.spark.sql.functions._
    doubleDS.agg(sum("value")).show()
    doubleDS.agg(mean("value")).show()

    //reduceByKey API
    val reduceCountByRDD = wordsPair.reduceByKey(_+_)
    val reduceCountByDs = wordsPairDs.mapGroups((key,values) =>(key,values.length))

    println(reduceCountByRDD.collect().toList)
    println(reduceCountByDs.collect().toList)

    //reduce function
    val rddReduce = doubleRDD.reduce((a,b) => a +b)
    val dsReduce = doubleDS.reduce((row1,row2) =>
    Row(row1.getDouble(0) + row2.getDouble(0)))

    println("rdd reduce is " +rddReduce +" dataset reduce "+dsReduce)

  }

}
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/232479

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

相关文章

发表评论

资源下载

更多资源
Mario,低调大师唯一一个Java游戏作品

Mario,低调大师唯一一个Java游戏作品

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

Oracle Database,又名Oracle RDBMS

Oracle Database,又名Oracle RDBMS

Oracle Database,又名Oracle RDBMS,或简称Oracle。是甲骨文公司的一款关系数据库管理系统。它是在数据库领域一直处于领先地位的产品。可以说Oracle数据库系统是目前世界上流行的关系数据库管理系统,系统可移植性好、使用方便、功能强,适用于各类大、中、小、微机环境。它是一种高效率、可靠性好的、适应高吞吐量的数据库方案。

Apache Tomcat7、8、9(Java Web服务器)

Apache Tomcat7、8、9(Java Web服务器)

Tomcat是Apache 软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache、Sun 和其他一些公司及个人共同开发而成。因为Tomcat 技术先进、性能稳定,而且免费,因而深受Java 爱好者的喜爱并得到了部分软件开发商的认可,成为目前比较流行的Web 应用服务器。

Eclipse(集成开发环境)

Eclipse(集成开发环境)

Eclipse 是一个开放源代码的、基于Java的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。幸运的是,Eclipse 附带了一个标准的插件集,包括Java开发工具(Java Development Kit,JDK)。