MapReduce框架Partitioner分区方法
前言:对于二次排序相信大家也是似懂非懂,我也是一样,对其中的很多方法都不理解诶,所有只有暂时放在一边,当你接触到其他的函数,你知道的越多时你对二次排序的理解也就更深入了,同时建议大家对wordcount的流程好好分析一下,要真正的知道每一步都是干什么的。
1.Partitioner分区类的作用是什么?
2.getPartition()三个参数分别是什么?
3.numReduceTasks指的是设置的Reducer任务数量,默认值是是多少?
扩展:
如果不同类型的数据被分配到了同一个分区,输出的数据是否还是有序的?
在进行MapReduce计算时,有时候需要把最终的输出数据分到不同的文件中,比如按照省份划分的话,需要把同一省份的数据放到一个文件中;按照性别划分的话,需要把同一性别的数据放到一个文件中。我们知道最终的输出数据是来自于Reducer任务。那么,如果要得到多个文件,意味着有同样数量的Reducer任务在运行。Reducer任务的数据来自于Mapper任务,也就说Mapper任务要划分数据,对于不同的数据分配给不同的Reducer任务运行。Mapper任务划分数据的过程就称作Partition。负责实现划分数据的类称作Partitioner。
Partitoner类的源码如下:
package org.apache.hadoop.mapreduce.lib.partition; import org.apache.hadoop.mapreduce.Partitioner; /** Partition keys by their {@link Object#hashCode()}. */ public class HashPartitioner<K, V> extends Partitioner<K, V> { /** Use {@link Object#hashCode()} to partition. */ public int getPartition(K key, V value, int numReduceTasks) { //默认使用key的hash值与上int的最大值,避免出现数据溢出 的情况 return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks; } }
HashPartitioner是处理Mapper任务输出的,getPartition()方法有三个形参,源码中key、value分别指的是Mapper任务的输出,numReduceTasks指的是设置的Reducer任务数量,默认值是1。那么任何整数与1相除的余数肯定是0。也就是说getPartition(…)方法的返回值总是0。也就是Mapper任务的输出总是送给一个Reducer任务,最终只能输出到一个文件中。 对如下数据,按字符串的长度分区,长度为1的放在一个,2的一个,3的各一个。
河南省;1 河南;2 中国;3 中国人;4 大;1 小;3 中;11这时候,我们使用默认的分区函数,就不行了,所以需要我们定制自己的Partition,首先分析下,我们需要3个分区输出,所以在设置reduce的个数时,一定要设置为3,其次在partition里,进行分区时,要根据长度具体分区,而不是根据字符串的hash码来分区。核心代码如下:
public static class PPartition extends Partitioner<Text, Text>{ @Override public int getPartition(Text arg0, Text arg1, int arg2) { /** * 自定义分区,实现长度不同的字符串,分到不同的reduce里面 * * 现在只有3个长度的字符串,所以可以把reduce的个数设置为3 * 有几个分区,就设置为几 * */ String key=arg0.toString(); if(key.length()==1){ return 1%arg2; }else if(key.length()==2){ return 2%arg2; }else if(key.length()==3){ return 3%arg2; } return 0; } }
在运行Mapreduce程序时,只需在主函数里加入如下两行代码即可:
job.setPartitionerClass(PPartition.class); job.setNumReduceTasks(3);//设置为3

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
MapReduce框架Mapper和Reducer类源码分析
一:Mapper类 在Hadoop的mapper类中,有4个主要的函数,分别是:setup,cleanup,map,run。代码如下: protected void setup(Context context) throws IOException, InterruptedException { // NOTHING } protected void map(KEYIN key, VALUEIN value, Context context) throws IOException, InterruptedException { context.write((KEYOUT) key, (VALUEOUT) value); } protected void cleanup(Context context) throws IOException, InterruptedException { // NOTHING } public void run(Context context) throws IOException, InterruptedException { set...
- 下一篇
MapReduce框架排序和分组
前言: Mapreduce框架就是map->reduce,其中Map中的<key,value>是偏移量和行值,在其之前会使用job.setInputFormatClass定义的InputFormat将输入的数据集分割成小数据块splites,同时InputFormat提供一个RecordReder的实现。本例子中使用的是TextInputFormat,他提供的RecordReder会将文本的一行的行号作为key,这一行的文本作为value。这就是自定义Map的输入是<LongWritable, Text>的原因。 之后调用Map类进行split,将其写入环形内存中,待其达到阀值时,对其的80%进行排序排序和分组,这都是在Map和Reduce之间完成,那么下面我们来看看这些函数类 一、分区 参考上一篇博客:http://blog.csdn.net/gamer_gyt/article/details/47339755 二、排序 参考博客:http://blog.csdn.net/gamer_gyt/article/details/48025805 按照Ke...
相关文章
文章评论
共有0条评论来说两句吧...