大数据应用之双色球算奖平台总体设计历史数据存储篇
大数据应用之双色球算奖平台总体设计历史数据存储篇
作者:张子良
版权所有,转载请注明出处
1.1 引子:文件OR数据库
历史期次的双色球选注数据的存储,采用什么样的格式比较好呢?这需要重点从三个方面考虑,一、文件访问方便吗?二、文件服务器空间够用吗?三、软硬件故障环境下,如何保障数据的可用性。基于这几个方面的考虑,到底是采用文件存储还是采用数据库存储呢?本文,从传统和前沿技术两个角度给出了两种相应的解决方案。
1.2 文件存储
1.2.1 三大问题
根据上一篇《大数据应用之双色球算奖平台总体设计数据规模估算篇》分析,双色球单期次数据的存储规模在7G左右,记录数在2亿条左右。可以考虑以文本文件的方式进行存储,这里面面临三大问题,一、单个文件过大的问题,访问不便,文本文件一般来讲超过200M,使用常规文本文件阅读器打开,都会成为问题,各位可以自行尝试。二、历史期次存储空间问题,技术总是在发展的,目前一般的服务器存储空间,单台服务器硬盘配置个NT,从技术和成本角度,都不会成为障碍,双色球每周三期,考虑到节假日的因素,每年约156期,156*7=1092,所需空间约1T。三、数据高可用性问题,传统单点存储方式的缺点,不做说明,考虑一个极端,硬盘坏了,或者服务器宕机,数据怎么访问?
1.2.2 传统方案
问题的存在,不代表没有解决的方法,一切软件问题的技术解决方案,其实都是在各种妥协中寻求平衡点而已。当然总有无法平衡的时候,而这时总会有技术方面的突破,有需求才有动力。传统的方式,针对问题一,可以按照地域或者期次进行文件夹组织,按照投注站进行文件命名,不同投注站的单独期次的文件存放到同一个文件中,这样做的好处是单个文件的大小变小了,读取成为可能,缺点是你要去管理大量的小文件。针对问题二、如果考虑一台主机就能存个三年五载的数据,不妨搞个磁盘阵列,或者多加几块T级的存储硬盘。这么做的好处是空间问题得到解决了,缺点是仍然面临IO读取速度的问题。针对问题三、可以采用磁带机,或者物理隔离的冗余备份,考虑到数据的特点,数据一次写入,不会发生变更,所以即使是刻盘的方式都是能够解决问题的,这么做自然能做到保障数据的可用性,但是同样的存在问题,那就是即时可用性,无论什么原因,我必须停下当前的工作,重新进行数据的导入和加载。
1.2.3 前沿技术
如果双色球历史数据存储的问题,结合最新的分布式存储(HDFS),会得到怎么样的效果呢?我们不妨仔细的考虑一下。如果采用分布式单文件存储,每一期作为一个文件,可以很好的解决存储空间和高可用性的问题,但是分段读取还是一个障碍,除非你一次想使用整个文件。所以还是要妥协,那就是把文件按照上一节中提到的方式进行切分。只是考虑业务分析的需求,粒度可以控制在以地域为单位或者以投注站为单位,粒度过细则会涉及到HDFS文件分块的问题(64M)。
1.3 数据库存储
1.3.1 核心问题
考虑到双色球投注数据的特点,每一个选注为一个独立的数据单元,一条记录。采用关系型数据库进行存储的好处很明显,就是结构清晰,访问方便。但是由于数据规模的问题,单表存储2亿条记录,如果采用传统关系型数据库,面临的核心问题就是单表记录数过大的问题。
1.3.2 传统技术-分区&分表
历史的因素,关系型数据一致面临大数据应用领域的挑战,当然也衍生出来许多的解决办法,比如说分区,比如说分表。分区的核心思想在于增加单表的空间,而分表的核心思想则在于分而治之。但是都无法逃避单点访问受限的问题,再怎么变,也要受控于RDMS服务器的性能。
1.3.3 前沿技术-NoSQL
如果采用No-SQL技术(Hbase)又会是怎么样的情形呢?我们以期次为单位组织表结构,每期一个文件,以投注站编号和流水号为rowkey,以红球为family1,以篮球为family2。根据Hbase的特点,则既可以解决记录数的问题,也可以解决访问并发访问性能的问题(Hbase文件存储采用HDFS)。同时Hbase基础之上有很多分布式并行计算的工具可用,可以很好的协调多服务器的并行计算。
1.4 对比分析
前文已述,很喜欢No-SQL方式的实现,个人认为是目前最为恰当的方式。引玉抛砖,还是多听听各位大牛的意见吧。
作者:张子良
出处:http://www.cnblogs.com/hadoopdev
本文版权归作者所有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
ElasticSearch查询 第二篇:文档更新
《ElasticSearch查询》目录导航: ElasticSearch查询 第一篇:搜索API ElasticSearch查询 第二篇:文档更新 ElasticSearch查询 第三篇:词条查询 ElasticSearch查询 第四篇:匹配查询(Match) ElasticSearch查询 第五篇:布尔查询 ElasticSearch是性能优化的分布式全文搜索引擎,存储数据的载体是文档(Document),它的优势在于搜索速度快和支持聚合操作,在更新文档时,基本上能够达到实时搜索。ElasticSearch引擎总是按照文档标识来更新数据,并发控制是通过顺序的版本ID(version)实现的,控制写-写、写-读冲突,实现数据弱一致性。 在ElasticSearch引擎中,索引定义了文档的逻辑存储,索引是由段(Segment)组成的,段不是实时更新的,这意味着,在建立索引时,一个段写入磁盘后,就不再被更新。被删除文档的信息存储在一个单独的文件中,在搜索数据时,ElasticSearch首先从段中查询,再从查询结果中过滤被删除的文档,这意味着,段中存储”未被删除文档“的密度降低。多个段可...
- 下一篇
地球上最大的PHP站点 后端技术解密
Facebook的扩展性挑战 在我们讨论细节之前,这里有一些Facebook已经做的软件规模: ◆Facebook有570000000000每月页面浏览量 (据Google Ad Planner) ◆Facebook的照片量比其他所有图片网站加起来还多(包括Flickr等网站) ◆每个月超过30亿张照片被上传 ◆Facebook的系统服务每秒处理120万张照片,这不包括CDN服务中处理的照片 ◆每月超过25亿条的内容 (状态更新,评论等)被共享 ◆Facebook有超过30,000服务器(这个数字是去年的) Facebook扩展所依赖的软件 Facebook是在某些程度上说仍然是LAMP的站点,但它比普通的LAMP大得多,以纳入其他元素和很多服务,并修改现行的做法。 例如: ◆Facebook仍使用PHP,但它已经为它建立一个编译器,以便它可以分为本地代码打开了Web服务器,从而提高性能。 ◆Facebook使用Linux,但他特别为网络吞吐量做了优化。 ◆Facebook使用MySQL,但主要是作为一个Key-value的持久性存储,Jions和服务器逻辑操作在Web服务器上操作。因...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- CentOS8安装Docker,最新的服务器搭配容器使用
- SpringBoot2配置默认Tomcat设置,开启更多高级功能
- Hadoop3单机部署,实现最简伪集群
- CentOS关闭SELinux安全模块
- CentOS7设置SWAP分区,小内存服务器的救世主
- Docker安装Oracle12C,快速搭建Oracle学习环境
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- CentOS7编译安装Gcc9.2.0,解决mysql等软件编译问题
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程