您现在的位置是:首页 > 文章详情

Tensorflow快餐教程(2) - 标量运算

日期:2018-04-16点击:591

Tensorflow的Tensor意为张量。一般如果是0维的数组,就是一个数据,我们称之为标是Scalar;1维的数组,称为向量Vector;2维的数组,称为矩阵Matrics;3维及以上的数组,称为张量Tensor。
在机器学习中,用途最广泛的是向量和矩阵的运算。这也是我们学习中的第一个难关。
不过,这一节我们先打标量的基础。

上节我们学过,Tensorflow的运行需要一个Session对象。下面代码中所用的sess都是通过

sess = tf.Session()

获取的Session对象,以下就都省略不写了。

标量Scalar

标量是指只有一个数字的结构。
我们尝试将一个整数赋给一个Tensorflow的常量,看看是什么效果:

>>> a10 = 1 >>> b10 = tf.constant(a10) &
原文链接:https://yq.aliyun.com/articles/582490
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章