DC学院学习笔记(十七):分类及逻辑回归

回归和分类的区别

  • 分类:对离散型变量进行预测(二分类、多分类)
  • 回归:对数值型变量进行预测
  • 区别:回归的y为数值连续型变量;分类的y是类别离散型变量

分类问题

1. 分类问题示例:信用卡
从x1:职业,x2:收入等等信用卡申请人不同的信息维度,来判断y:是否发放信用卡,发放哪一类信用卡

2. 分类经典方法:logistic回归(二分类)
虽然名字里有回归二字,但logistic回归解决的是分类的问题

  • 回归得到的数值y可以看做属于类别1的概率:
    下图为logistic函数(也叫sigmoid函数)图像

image

  • 二分类到多分类:通过One vs. Rest
    使用logistic进行多分类,scikit-learn 会默认采用OvR方法:
  1. 为每个类别分别建立一个二分类器
  2. 训练中正例为该类别样本,负例为所有其他样本
  3. 在所有分类中,选择概率最高的那个类别

如iris数据集中有三个类别,选择使用logistic回归进行分类,则需要训练三个分类器,根据每个样本隶属不同类的概率大小来进行分类

3. scikit learn 实现logistic回归

载入iris数据集

import pandas 
iris = pandas.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data',header=None)
iris.columns=['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm','Species']

实现logistic回归

import sklearn
import numpy as np
from sklearn import linear_model
lm=linear_model.LogisticRegression()
features=['PetalLengthCm']
X=iris[features]
#需要讲Species这个字段由字符串类型转变为数值类型,以表示不同的类别
from sklearn.preprocessing import LabelEncoder
#初始化label
le=LabelEncoder()
le.fit(iris['Species'])
#用离散值转化标签值
y=le.transform(iris['Species'])
print(y)
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]

#通过交叉检验,得到分类准确率
from sklearn.model_selection import cross_val_score
#logistic中的scoring参数指定为accuracy
scores=cross_val_score(lm,X,y,cv=5,scoring='accuracy')
print(np.mean(scores))
0.786666666667

往Feature中添加特征,看看准确率的变化

features=['PetalLengthCm','SepalWidthCm','PetalLengthCm']
X=iris[features]
#需要讲Species这个字段由字符串类型转变为数值类型,以表示不同的类别
from sklearn.preprocessing import LabelEncoder
#初始化label
le=LabelEncoder()
le.fit(iris['Species'])
#用离散值转化标签值
y=le.transform(iris['Species'])
##print(y)
#通过交叉检验,得到分类准确率
from sklearn.model_selection import cross_val_score
#logistic中的scoring参数指定为accuracy
scores=cross_val_score(lm,X,y,cv=5,scoring='accuracy')
print(np.mean(scores))
0.906666666667

果然好了很多!

优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/478005

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

相关文章

发表评论

资源下载

更多资源
优质分享Android(本站安卓app)

优质分享Android(本站安卓app)

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario,低调大师唯一一个Java游戏作品

Mario,低调大师唯一一个Java游戏作品

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

Oracle Database,又名Oracle RDBMS

Oracle Database,又名Oracle RDBMS

Oracle Database,又名Oracle RDBMS,或简称Oracle。是甲骨文公司的一款关系数据库管理系统。它是在数据库领域一直处于领先地位的产品。可以说Oracle数据库系统是目前世界上流行的关系数据库管理系统,系统可移植性好、使用方便、功能强,适用于各类大、中、小、微机环境。它是一种高效率、可靠性好的、适应高吞吐量的数据库方案。

Apache Tomcat7、8、9(Java Web服务器)

Apache Tomcat7、8、9(Java Web服务器)

Tomcat是Apache 软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache、Sun 和其他一些公司及个人共同开发而成。因为Tomcat 技术先进、性能稳定,而且免费,因而深受Java 爱好者的喜爱并得到了部分软件开发商的认可,成为目前比较流行的Web 应用服务器。