Coding Agent 核心机制解析
导读 AI 编码工具正在从"智能补全"演进为能自主完成复杂任务的 Coding Agent。本文基于开源项目源码研究与实践经验,系统性地拆解 Coding Agent 的工作原理。旨在帮助开发者在了解Coding Agent后,与AI伙伴更好的协作配合,更高效的提问和拿到有效结果。 01背景 AI 编码工具的发展速度快得有点"离谱"。从开始使用 GitHub Copilot 的代码补全,到使用Claude Code、Cursor、Comate IDE等完成复杂编程任务,AI 不再只是个「智能补全工具」,它能读懂你的代码库、执行终端命令、甚至帮你调试问题,成为你的“编码伙伴”。 我自己在团队里推 AI 编码工具的时候,发现一个很有意思的现象:大家都在用,但很少有人真正理解它是怎么工作的。有人觉得它"很神奇",有人吐槽它"经常乱来",还有人担心"会不会把代码搞乱"。这些困惑的背后,其实都指向同一个问题:我们对这个"伙伴"还不够了解。 就像你不会无脑信任一个新来的同事一样,要和 AI 编码伙伴配合好,你得知道它的工作方式、能力边界、以及怎么"沟通"才更有效。 在经过多次的实践尝试后,我尝试探...

