GPU 网络通信基础,Part 1(横向与纵向扩展;训练中的通信环节...)
编者按: 当我们谈论训练万亿参数的大语言模型时,除了惊叹于其算力需求,是否曾深入思考过:如何让成千上万甚至数十万块 GPU 高效协同工作,像超级大脑般实时共享信息? 本文以训练大语言模型对海量算力的迫切需求为切入点,深入剖析了大规模 GPU 集群网络设计的核心挑战与解决方案:首先揭示了理想化"全互联"架构的不可行性,进而引入网络交换机及分层"叶脊拓扑"结构。接着系统对比了两种关键扩展策略------通过增加节点实现横向扩展与通过提升单节点算力密度实现纵向扩展,并重点强调节点内通信(如 NVLink/Infinity Fabric)凭借极短物理距离和专用互连技术,其速度与带宽远超节点间通信。最后结合神经网络训练流程(前向/反向传播、梯度更新),点明全归约(AllReduce) 等集合通信操作在梯度同步中的核心地位及其延迟对训练效率的直接影响,并提及软件优化(如通信与计算重叠)的重要性。 作者 | Austin Lyons 编译 | 岳扬 本系列文章将用轻松的方式聊聊网络与 GPU。这个话题很重要,但可能显得有些枯燥或深奥。请耐心听我道来! 01 训练动机 训练大语言模型需要海量的浮点运算...