您现在的位置是:首页 > 文章详情

LeCun 新提案:用 CV 思路重塑语言模型

日期:2025-09-23点击:13

在当今的人工智能领域,Yann LeCun 提出的 JEPA(联合嵌入预测架构)正在重新定义大语言模型(LLM)的训练方式。这位诺贝尔奖得主不是在批评现有的 LLM,而是亲自出手进行改造。传统的 LLM 训练方法主要依赖于输入空间中的重构与生成,如预测下一个单词,这种方法在视觉领域已被证明存在局限性。

LeCun 和他的团队认为,可以借鉴计算机视觉(CV)领域的先进技术来提升语言模型的表现。JEPA 的核心思想是通过在抽象表征空间中预测缺失的特征,以高效地学习世界知识。Meta AI 团队已经在图像和视频处理上成功应用了 JEPA,而现在,他们希望将这一理念扩展到语言模型领域。

为了填补这个空白,研究人员 Hai Huang、Yann LeCun 和 Randall Balestriero 共同提出了 LLM-JEPA。这一新模型将文本和代码视为同一概念的不同视角,首次成功将 JEPA 的自监督学习架构应用于 LLM。通过结合 JEPA 在嵌入空间学习的优势,LLM-JEPA 不仅保留了 LLM 强大的生成能力,还在性能和鲁棒性上实现了双丰收。

实验证明,LLM-JEPA 在多个主流模型(如 Llama3、OpenELM、Gemma2等)和多样化的数据集(如 GSM8K、Spider 等)上表现出色,显著超越了传统 LLM 训练目标。此外,它在防止过拟合方面显示出了强大的鲁棒性,为语言模型的未来发展提供了新的方向。

尽管目前的研究主要集中在微调阶段,但初步的预训练结果显示出巨大的潜力。团队计划在未来的工作中进一步探索 LLM-JEPA 在预训练过程中的应用,期待为语言模型的性能提升注入新的动力。

原文链接:https://www.oschina.net/news/373887
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章