您现在的位置是:首页 > 文章详情

MySQL8 窗口函数是真的省事!

日期:2024-10-19点击:149

@[toc] MySQL9 已经出来了,MySQL8 相信也慢慢走进各位小伙伴的工作中了。

MySQL8 还是有很多重量级变化的,一些底层优化大家在使用中有时候不易察觉,但是有一些用法,还是带给我们耳目一新的感觉,今天松哥和大家分享一下 MySQL8 里边的窗口函数。

一 什么是窗口函数

在 MySQL 8 中,窗口函数(Window Functions)是一类强大的分析函数,允许你在查询结果集上执行计算,而无需将数据分组到多个输出行中。窗口函数通常与 OVER() 子句一起使用,以指定数据窗口,即窗口函数将要在其上执行计算的行集。

简单来说,窗口函数的作用类似于在查询中对数据进行分组,不同的是,分组操作会把分组的结果聚合成一条记录,而窗口函数是将结果置于每一条数据记录中。

窗口函数的格式类似下面这样:

<窗口函数> OVER ([PARTITION BY <分组列> [, <分组列>...]] [ORDER BY <排序列> [ASC | DESC] [, <排序列> [ASC | DESC]]...] [<rows or range clause>]) 
  • <窗口函数> : 定义要在窗口中计算的聚合函数或其它分析函数,如 COUNTRANKSUM 等。
  • OVER : 窗口函数的核心关键字。
  • PARTITION BY : 定义要用来分组的一组列名。
  • ORDER BY : 定义用来排序的一组列名。
  • <rows or range clause> : 定义窗口的行集合。默认为 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW,表示窗口包括从窗口开始到当前行的所有行。

接下来我们通过一个实际案例来体会下窗口函数。

二 窗口函数实践

2.1 统计成绩和排名

假设我有如下一张表:

我现在想要计算学生的考试总成绩以及单科成绩排名,利用窗口函数就能快速搞定,如下:

SELECT name,subject,score, SUM(score) OVER(PARTITION by name) AS '总分', DENSE_RANK() OVER(PARTITION by subject ORDER BY score DESC) AS '学科排名' from student 

和窗口函数相关的就两列:

  • sum 求总分,over 中按照 name 进行分组,相当于就是计算每个人的总分。
  • dense_rank 是排序,这个函数会考虑并列的情况,但是并列并不影响排序,因为是计算每个人单科排名,所以就按照学科分组之后按照 score 排序。

最终执行结果如下:

2.2 销售统计

假设我有如下一张表:

这是一个名为 sales 的表,其中包含 id(销售记录 ID)、product_id(产品 ID)、sale_date(销售日期)和 amount(销售额)等字段。

现在有如下几个需求,大家把这几个需求搞懂了,基本上窗口函数就会用了。

计算累计销售额

需求:按产品 ID 分组,计算每个产品的累计销售额。

SELECT id, product_id, sale_date, amount, SUM(amount) OVER (PARTITION BY product_id ORDER BY sale_date) AS '累计销售额' FROM sales; 

SUM(amount) OVER (PARTITION BY product_id ORDER BY sale_date) AS '累计销售额' 表示按 product_id 分组,按 sale_date 排序,计算每个产品的累计销售额。

最终查询结果如下:

计算移动平均值

需求:按产品 ID 分组,计算每个产品的最近 3 笔销售记录的移动平均销售额。

SELECT id, product_id, sale_date, amount, AVG(amount) OVER (PARTITION BY product_id ORDER BY sale_date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS '移动平均销售额' FROM sales; 

AVG(amount) OVER (PARTITION BY product_id ORDER BY sale_date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS '移动平均销售额' 表示按 product_id 分组,按 sale_date 排序,计算当前行及前两行的平均销售额。

最终查询结果如下:

计算排名

需求:按产品 ID 分组,计算每个销售记录在该产品中的排名。

SELECT id, product_id, sale_date, amount, RANK() OVER (PARTITION BY product_id ORDER BY amount DESC) AS '销售金额排名' FROM sales; 

RANK() OVER (PARTITION BY product_id ORDER BY amount DESC) AS '销售金额排名' 表示按 product_id 分组,按 amount 降序排序,计算每个销售记录在该产品中的排名。

最终查询结果如下:

计算百分比排名

需求:按产品 ID 分组,计算每个销售记录在该产品中的百分比排名。

SELECT id, product_id, sale_date, amount, PERCENT_RANK() OVER (PARTITION BY product_id ORDER BY amount DESC) AS '百分比排名' FROM sales; 

PERCENT_RANK() OVER (PARTITION BY product_id ORDER BY amount DESC) AS '百分比排名' 表示按 product_id 分组,按 amount 降序排序,计算每个销售记录在该产品中的百分比排名。

最终查询结果如下:

计算前后行的差值

需求:按产品 ID 分组,计算每个销售记录与上一个销售记录之间的销售额差值。

SELECT id, product_id, sale_date, amount, LAG(amount, 1) OVER (PARTITION BY product_id ORDER BY sale_date) AS '上个销售记录', amount - LAG(amount, 1) OVER (PARTITION BY product_id ORDER BY sale_date) AS '差额' FROM sales; 

LAG(amount, 1) OVER (PARTITION BY product_id ORDER BY sale_date):按 product_id 分组,按 sale_date 排序,获取当前行的上一行的 amount 值。 amount - LAG(amount, 1) OVER (PARTITION BY product_id ORDER BY sale_date):计算当前行与上一行的销售额差值。

最终查询结果如下:

计算第一个和最后一个值

需求:按产品 ID 分组,计算每个产品的第一个和最后一个销售日期。

SELECT product_id, MIN(sale_date) OVER (PARTITION BY product_id) AS '第一个销售日期', MAX(sale_date) OVER (PARTITION BY product_id) AS '最后一个销售日期' FROM sales; 

MIN(sale_date) OVER (PARTITION BY product_id):按product_id分组,计算每个产品的第一个销售日期。 MAX(sale_date) OVER (PARTITION BY product_id):按product_id分组,计算每个产品的最后一个销售日期。

最终查询结果如下:

好啦,通过这几个小小案例,小伙伴们明白窗口函数了吧~

原文链接:https://my.oschina.net/lenve/blog/16398156
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章