提高 AI 训练算力效率:蚂蚁 DLRover 故障自愈技术的创新实践
本文来自蚂蚁 DLRover 开源负责人王勤龙(花名长凡)在 2024 全球开发者先锋大会(GDC)的分享——《DLRover 训练故障自愈:大幅提升大规模 AI 训练的算力效率》。 王勤龙,长期在蚂蚁从事 AI 基础设施的研发,主导了蚂蚁分布式训练的弹性容错与自动扩缩容项目的建设。先后参与多个开源项目,如 ElasticDL 和 DLRover,开放原子基金会 2023 活力开源贡献者,蚂蚁集团 2022 T-Star 优秀工程师。目前为蚂蚁 AI Infra 开源项目 DLRover 的架构师,专注于打造稳定、可扩展和高效的大规模分布式训练系统。 当前大规模语言模型训练需要大量的加速卡来训练,如 GPU 等。由于 GPU 机器的故障率较高,频繁的故障会导致训练中断、计算浪费和集群空转,从而造成大量的时间和算力浪费。为此,DLRover 开源了训练故障自愈技术,长凡在演讲中介绍了 DLRover 如何通过快速的节点状态检测、弹性扩缩容、动态组网和 Flash Checkpoint 等技术,最大程度地降低故障导致的算力浪费。 大规模 AI 分布式训练面临的挑战 随着大模型从十亿参数迈向...