在灾难推文分析场景上比较用 LoRA 微调 Roberta、Llama 2 和 Mistral 的过程及表现
引言 自然语言处理 (NLP) 领域的进展日新月异,你方唱罢我登场。因此,在实际场景中,针对特定的任务,我们经常需要对不同的语言模型进行比较,以寻找最适合的模型。本文主要比较 3 个模型: RoBERTa、Mistral-7B 及 Llama-2-7B。我们用它们来解决一个常见问题 —— 对灾难相关的推文进行分类。值得注意的是,Mistral 和 Llama 2 是 70 亿参数的大模型。相形之下,RoBERTa-large (355M 参数) 只是一个小模型,我们用它作为比较的基线。 本文,我们使用 PEFT (Parameter-Efficient Fine-Tuning,参数高效微调) 技术: LoRA (Low-Rank Adaptation,低秩适配) 来微调带序列分类任务头的预训练模型。LoRA 旨在显著减少可训参数量,同时保持强大的下游任务性能。 本文的主要目标是通过对 Hugging Face 的三个预训练模型进行 LoRA 微调,使之适用于序列分类任务。这三个预训练模型分别是: meta-llama/Llama-2-7b-hf、mistralai/Mistral-7B...
