轻松理解 Transformers (3): Feed-Forward Layer 部分
编者按:随着人工智能技术的不断发展Transformer架构已经成为了当今最为热门的话题之一。前馈层作为Transformer架构中的重要组成部分,其作用和特点备受关注。本文通过浅显易懂的语言和生活中的例子,帮助读者逐步理解Transformers中的前馈层。 本文是Transformers系列的第三篇。作者的观点是:前馈层在Transformer架构中扮演着至关重要的角色,它能够有效地提高计算效率,同时也是集体智慧的体现。 文章作者首先介绍了前馈层的基本结构,它由全连接层组成,进行线性变换和线性计算。但也存在局限性,不能进行复杂的非线性变换。所以前馈层需要激活函数(如ReLU)进行非线性转换,增强网络的表达能力。为防止模型仅记忆数据特征而不具备推理能力,需要使用正则化技术如dropout。相信通过本文的阅读,读者将对Transformer中的前馈层有更深入的理解。 随着深度学习在语音、图像、自然语言处理等领域取得突破,人工智能或许正向着真正的通用人工智能迈进。但要培养通用人工智能,我们还需不断深入理解其中的原理和相关机制。 以下是译文,enjoy! 作者 | Chen Margali...
