阿里云 PAIx 达摩院 GraphScope 开源基于 PyTorch 的 GPU 加速分布式 GNN 框架
作者:艾宝乐 导读 近期阿里云机器学习平台 PAI 团队和达摩院 GraphScope 团队联合推出了面向 PyTorch 的 GPU 加速分布式 GNN 框架 GraphLearn-for-PyTorch(GLT) 。GLT 利用 GPU 的强大并行计算性能来加速图采样,并利用 UVA 来减少顶点和边特征的转换和拷贝。对于大规模图,GLT 使用了生产者-消费者的架构,通过异步并发的分布式采样和特征查找以及热点缓存功能支持在多个 GPU 或多个机器上进行高效的分布式训练。接口上,GLT 保持了 PyTorch的风格,并且和 PyG 兼容,只需少量代码修改就可以加速 PyG 的单机训练程序,或者将 PyG 单机模型改成分布式训练。此外,GLT 还提供了灵活的分布式训练部署以满足不同的需求。 开源地址:https://github.com/alibaba/graphlearn-for-pytorch 文档地址:https://graphlearn-torch.readthedocs.io/en/latest/index.html 背景介绍 图神经网络作为一种图数据上表示学习的方法已经被广泛...


