首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://www.oschina.net/p/text2video-zero

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

每日一博 | 从 0 到 1 构建基于自身业务的前端工具库

作者:京东零售 吴迪 前言 在实际项目开发中无论 M 端、PC 端,或多或少都有一个 utils 文件目录去管理项目中用到的一些常用的工具方法,比如:时间处理、价格处理、解析url参数、加载脚本等,其中很多是重复、基础、或基于某种业务场景的工具,存在项目间冗余的痛点以及工具方法规范不统一的问题。 在实际开发过程中,经常使用一些开源工具库,如 lodash,以方便、快捷的进行项目开发。但是当 npm上没有自己中意或符合自身业务的工具时,我们不得不自己动手,此时拥有自己的、基于业务的工具库就显得尤为重要。 我们所熟知的Vue、React等诸多知名前端框架,或公司提供的一些类库,它们是如何开发、构建、打包出来的,本文将带领你了解到如何从0到1构建基于自身业务的前端工具库。 构建工具库主流方案 1. WEBPACK webpack 提供了构建和打包不同模块化规则的库,只是需要自己去搭建开发底层架构。 vue-cli,基于 webpack , vue-cli 脚手架工具可以快速初始化一个 vue 应用,它也可以初始化一个构建库。 2. ROLLUP rollup 是一个专门针对JavaScr...

向量嵌入:AutoGPT的幻觉解法?

来源|Eye on AI OneFlow编译 翻译|贾川、杨婷、徐佳渝 “一本正经胡说八道”的幻觉问题是ChatGPT等大型语言模型(LLM)亟需解决的通病。虽然通过人类反馈的强化学习(RLHF),可以让模型对错误的输出结果进行调整,但在效率和成本上不占优势,况且仅通过RLHF并不能彻底解决问题,由此也限制了模型的实用性。 由于大型语言模型的本质是基于语言的“统计概率”,幻觉现象表明,LLM并没有真正理解它所生成的内容,也不具备对错的概念。 此前,OpenAI首席科学家Ilya Sutskever谈到,他希望通过改进强化学习反馈步骤来阻止神经网络产生“幻觉”,他对解决这一问题非常自信,但只说了一句“让我们拭目以待”。 不过,向量嵌入(vector embeddings)看上去是解决这一挑战的更为简单有效的方法,它可以为LLM创建一个长期记忆的数据库。通过将权威、可信的信息转换为向量,并将它们加载到向量数据库中,数据库能为LLM提供可靠的信息源,从而减少模型产生幻觉的可能性。 最近,爆火的AutoGPT就集成了向量数据库Pinecone,可以让它进行长期内存存储,支持上下文保存...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

用户登录
用户注册