Netflix开源面向稀疏数据优化的轻量级神经网络库Vectorflow
介绍 随着过去几年来深度学习库和软件创新的蓬勃发展,研究机器学习是一个激动人心的时刻。大多数机器学习的库都是从相当专业的计算代码演变而来的,这些计算代码一般用于解决大密集度问题,例如为稀疏模型提供边缘支持的基于神经网络的图像分类通用框架。 在Netflix公司,我们的机器学习科学家在多个不同的领域处理着各种各样的问题:从根据你的爱好来定制电视和推荐电影,到优化编码算法。我们有一小部分问题涉及到处理极其稀疏的数据;手头问题的总维度数很容易就能达到数千万个特征,即使每次要看的可能只是少数的非零项。对于这些情况,我们认为需要有一个经过专门优化的轻量级的库,这个库用于在单一设备、多核环境下对稀疏数据进行浅层前馈神经网络的训练。我们想要一些小巧而又易用的工具,所以我们构建了Vectorflow,它是目前机器学习科学家使用的众多工具之一。 设计注意事项 敏捷性。我们希望数据科学家能够在完全自主的情况下轻松地运行和迭代他们的模型。所以我们用D语言写了Vectorflow。D语言是一种并不难学的现代系统语言,它具备快速的编译器和函数编程功能,为初学者提供了类似Python的使用体验,但在运行时通常具有...