首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://my.oschina.net/u/5588928/blog/7867373

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

从 PyTorch DDP 到 Accelerate 到 Trainer,轻松掌握分布式训练

概述 本教程假定你已经对于 PyToch 训练一个简单模型有一定的基础理解。本教程将展示使用 3 种封装层级不同的方法调用 DDP (DistributedDataParallel) 进程,在多个 GPU 上训练同一个模型: 使用 pytorch.distributed 模块的原生 PyTorch DDP 模块 使用 🤗 Accelerate 对 pytorch.distributed 的轻量封装,确保程序可以在不修改代码或者少量修改代码的情况下在单个 GPU 或 TPU 下正常运行 使用 🤗 Transformer 的高级 Trainer API ,该 API 抽象封装了所有代码模板并且支持不同设备和分布式场景。 什么是分布式训练,为什么它很重要? 下面是一些非常基础的 PyTorch 训练代码,它基于 Pytorch 官方在 MNIST 上创建和训练模型的示例。 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvisi...

利用DUCC配置平台实现一个动态化线程池

作者:京东零售 张宾 1.背景 在后台开发中,会经常用到线程池技术,对于线程池核心参数的配置很大程度上依靠经验。然而,由于系统运行过程中存在的不确定性,我们很难一劳永逸地规划一个合理的线程池参数。在对线程池配置参数进行调整时,一般需要对服务进行重启,这样修改的成本就会偏高。一种解决办法就是,将线程池的配置放到配置平台侧,系统运行期间开发人员根据系统运行情况对核心参数进行动态配置。 本文以公司DUCC配置平台作为服务配置中心,以修改线程池核心线程数、最大线程数为例,实现一个简单的动态化线程池。 2.代码实现 当前项目中使用的是Spring 框架提供的线程池类ThreadPoolTaskExecutor,而ThreadPoolTaskExecutor底层又使用里了JDK中线程池类ThreadPoolExecutor,线程池类ThreadPoolExecutor有两个成员方法setCorePoolSize、setMaximumPoolSize可以在运行时设置核心线程数和最大线程数。 setCorePoolSize方法执行流程是:首先会覆盖之前构造函数设置的corePoolSize,然后,如果...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Nacos

Nacos

Nacos /nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service 的首字母简称,一个易于构建 AI Agent 应用的动态服务发现、配置管理和AI智能体管理平台。Nacos 致力于帮助您发现、配置和管理微服务及AI智能体应用。Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现、服务配置、服务元数据、流量管理。Nacos 帮助您更敏捷和容易地构建、交付和管理微服务平台。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

用户登录
用户注册