开源方案复现ChatGPT流程!1.62GB显存即可体验,单机训练提速7.73倍
火爆全网的ChatGPT,仿佛开启了第四次工业革命,让微软、谷歌等全球科技巨头打得昏天黑地,引得各路玩家纷纷入局,抢占赛道。
然而由于OpenAI没有开源ChatGPT,如何有效复现ChatGPT已成为摆在大家面前的头号难题,急需可靠的开源共建方案。
Colossal-AI快速跟进,首个开源低成本复现ChatGPT完整流程。作为当下最火热的开源AI大模型解决方案,Colossal-AI已收获开源社区GitHub Star近万颗,此次开源亮点包括:
- 开源完整基于PyTorch的ChatGPT复现流程,涵盖全部3个阶段,可实现从预训练模型到ChatGPT的蜕变;
- 体验最小demo训练流程最低仅需1.62GB显存,任意单张消费级GPU即可满足,单卡模型容量最多提升10.3倍;
- 相比原生PyTorch,最高可提升单机训练速度7.73倍,单卡推理速度1.42倍,一行代码即可使用;
- 对于微调任务,可最多提升单卡的微调模型容量3.7倍,同时保持高速运行,仅需一行代码;
- 提供单卡、单机多卡、1750亿参数等多个版本,支持从Hugging Face导入OPT,GPT-3,BLOOM等多种预训练大模型;
- 收敛验证正在进行中,该项目也在吸引合作者共建生态。
开源地址:https://github.com/hpcaitech/ColossalAI
ChatGPT——AIGC引发的工业革命
如果问新年伊始,最火爆的科技热点是什么?非ChatGPT莫属。
它仿佛无所不能的六边形战士,可以聊天、写代码、修改 bug、做表格、发论文、写作业、做翻译、甚至代替Google搜索引擎等……
自发布以来,ChatGPT便已摧枯拉朽之势席卷各个行业,不仅5天时间便突破百万用户,月活用户突破1亿更是仅用时2个月,成为史上增速最快的消费级应用,远超如今其他知名应用,如Twitter 5 年、Meta(Facebook)4 年半,TikTok 9个月等,而手机普及到1亿用户则用了16年。
1亿用户月活用户耗时
比尔·盖茨盛赞“ChatGPT的意义不亚于PC和互联网诞生”,而微软CEO萨蒂亚·纳德拉(Satya Nadella)更是直言“堪比工业革命,这辈子第一次见这么大的技术浪潮” 和“AI 正在重塑互联网”。作为向OpenAI投资上百亿美元的大金主,微软已火速将ChatGPT整合进自家的搜索引擎必应Bing和Edge浏览器,还计划加入Teams以及Office等办公套件全家桶,股价一夜市值飙涨超800亿美元。
微软与谷歌发布会后股价对比
而隔壁需要担心被ChatGPT革命掉自家搜索引擎的谷歌,虽然拉响“红色警报”,紧急发布对标竞品Bard,却因Demo首秀翻车,股价市值瞬间蒸发1000亿美元。
一夜之间,全球的科技巨头们仿佛都回到了自己年轻时的样子,纷纷宣布要打造自己的ChatGPT。
但ChatGPT发布已有数月,市面上不仅没有预训练权重开源,连可靠的完整开源训练流程都仍是空白,更无法实现基于千亿大模型的ChatGPT全流程高效搭建和应用。临时上线,号称“对标ChatGPT”的一众新品们,因为闭源也难辨真伪。
为什么ChatGPT有如此魔力?复现它又有哪些难点?
ChatGPT技术分析
ChatGPT的惊人效果,重要特征是在训练过程引入人类反馈强化学习(RLHF),使得模型表现更符合人类价值观。
ChatGPT的训练流程主要分为三个阶段:
- 从Prompt库中采样,收集其人工回答,利用这些数据来微调预训练大语言模型。
- 从Prompt库中采样,使用大语言模型生成多个回答,人工对这些回答进行排序后,训练奖励模型(RM),来拟合人类的价值判断。
- 基于阶段1的监督微调模型和阶段2的奖励模型,利用强化学习算法对大语言模型进一步训练。
其中阶段3是RLHF训练的核心部分,OpenAI采用了强化学习中的近端策略优化算法(PPO),借此引入奖励信号,使得语言模型生成内容更加符合人类评判标准。
RLHF的三个阶段
ChatGPT模型的复杂性在于强化学习的引入会带来更多模型的调用。例如,使用基于Actor-Critic(AC)结构的PPO算法,需要在训练时进行Actor、Critic两个模型的前向推理和反向传播,以及监督微调模型、奖励模型的多次前向推理。在ChatGPT基础的InstructGPT的论文中,Actor和监督微调模型都使用了1750亿参数的GPT-3系列模型,Critic和奖励模型则使用了60亿参数的GPT-3系列模型。
对于如此多的模型参数,想要启动原始ChatGPT训练流程,需要数千GB的显存开销,显然远超单张GPU的容纳能力,常见的数据并行技术也无能为力。但即使引入张量并行、流水并行对参数进行划分,也仍需至少64张80GB的A100作为硬件基础。并且,其中的流水并行由于bubble和调度复杂,效率受限,不适合AIGC的生成式任务。阶段3涉及4个模型的复杂强化学习训练流程,进一步给ChatGPT的代码复现带来了困难和挑战。
使用Colossal-AI低成本复现ChatGPT
Colossal-AI以开源方式复现了ChatGPT训练的基本流程,包括阶段1预训练,阶段2的奖励模型的训练,以及最为复杂的阶段3的强化学习训练等。
同时,Colossal-AI通过ZeRO,Gemini, Chunk-based内存管理等技术,极大地降低ChatGPT训练的显存开销,仅需一半硬件资源即可启动1750亿参数模型训练(64卡->32卡),显著降低应用成本。若使用上述相同硬件资源,Colossal-AI则能以更短时间进行训练,节省训练成本,加速产品迭代。
为了让更多开发者体验复现ChatGPT模型,除1750亿参数版本外,Colossal-AI还提供高效的单卡、单机4/8卡的类ChatGPT版本,以降低硬件限制。
在单机多卡服务器上,即便使用最高端的A100 80GB显卡,由于ChatGPT的复杂性和内存碎片,PyTorch最大仅能启动基于GPT-L(774M)这样的小模型的ChatGPT。用PyTorch原生的DistributedDataParallel (DDP) 进行多卡并行扩展至4卡或8卡,性能提升有限。
Colossal-AI不仅在单卡速度上训练和推理优势明显,随着并行规模扩大还可进一步提升,最高可提升单机训练速度7.73倍,单卡推理速度1.42倍,还可继续扩展至大规模并行,显著降低ChatGPT复现成本。
为了尽可能降低训练成本和上手门槛,Colossal-AI还提供了在单张GPU上即可尝试的ChatGPT训练流程。相比于PyTorch在约10万元的A100 80GB上,最大仅能启动7.8亿参数模型,Colossal-AI将单卡容量提升10.3倍至80亿参数。对于基于1.2亿参数小模型的ChatGPT训练,最低仅需1.62GB显存,任意单张消费级GPU即可满足。
此外,Colossal-AI也致力于降低基于预训练大模型的微调任务成本。以ChatGPT可选的开源基础模型OPT为例,相比PyTorch,Colossal-AI可将提升单卡微调模型容量3.7倍(原始计算量显著增大),同时保持高速运行。
一行代码快速上手
Colossal-AI为Hugging Face社区的GPT,OPT和BLOOM等主流预训练模型,提供了开箱即用的ChatGPT复现代码。以GPT为例,仅需一行代码,指定使用Colossal-AI作为系统策略即可快速使用。
Python from chatgpt.nn import GPTActor, GPTCritic, RewardModel from chatgpt.trainer import PPOTrainer from chatgpt.trainer.strategies import ColossalAIStrategy strategy = ColossalAIStrategy(stage=3, placement_policy='cuda') with strategy.model_init_context(): actor = GPTActor().cuda() critic = GPTCritic().cuda() initial_model = deepcopy(actor).cuda() reward_model = RewardModel(deepcopy(critic.model)).cuda() trainer = PPOTrainer(strategy, actor, critic, reward_model, initial_model, ...) trainer.fit(prompts)
使用下列命令,即可快速启动单卡、单机多卡、1750亿版本训练,并测试各种性能指标(包括最大显存占用、吞吐率和TFLOPS等):
Python # 使用单机单卡训练GPT2-S,使用最小的batch size,Colossal-AI Gemini CPU策略 torchrun --standalone --nproc_pero_node 1 benchmark_gpt_dummy.py --model s --strategy colossalai_gemini_cpu --experience_batch_size 1 --train_batch_size 1 # 使用单机4卡训练GPT2-XL,使用Colossal-AI Zero2策略 torchrun --standalone --nproc_per_node 4 benchmark_gpt_dummy.py --model xl --strategy colossalai_zero2 # 使用4机32卡训练GPT-3,使用Colossal-AI Gemini CPU策略 torchrun --nnodes 4 --nproc_per_node 8 \ --rdzv_id=$JOB_ID --rdzv_backend=c10d --rdzv_endpoint=$HOST_NODE_ADDR \ benchmark_gpt_dummy.py --model 175b --strategy colossalai_gemini_cpu --experience_batch_size 1 --train_batch_size 1
背后优化
- 核心系统Colossal-AI
复现ChatGPT的背后,依赖面向大模型时代的通用深度学习系统Colossal-AI,可基于PyTorch高效快速部署AI大模型训练和推理,降低AI大模型应用成本。
自开源以来,Colossal-AI已经多次在GitHub热榜位列世界第一,获得GitHub Star超八千颗,并成功入选SC、AAAI、PPoPP、CVPR等国际AI与HPC顶级会议的官方教程。除上述优化外,Colossal-AI还针对AI大模型趋势,提供最多样和高效的大规模多维并行分布式解决方案,此前已在Stable Diffusion、OPT、AlphaFold等前沿模型上展现卓越优势。
Colossal-AI与当今主要开源项目同期开源数据对比
Colossal-AI由加州伯克利大学杰出教授James Demmel和新加坡国立大学校长青年教授尤洋领导。相关解决方案已成功在自动驾驶、云计算、零售、医药、芯片等行业知名厂商落地应用,广受好评。Colossal-AI已成功帮助某世界500强企业,开发具备在线搜索引擎能力增强的类ChatGPT聊天机器人模型。
- 低成本微调的LoRA
Colossal-AI支持使用低秩矩阵微调(LoRA)方法进行高效微调。LoRA方法认为大语言模型是过参数化的,其在微调中的参数改变量是一个低秩的矩阵,可以将其分解为两个更小的的矩阵的乘积,即。在微调时,固定大模型参数,只调整低秩矩阵参数,从而显著减小训练参数量。在微调之后,进行推理部署之前,只需要将参数加回原有矩阵即可,即
, 不增加模型的推理延迟。
LoRA示意图,仅需训练A、B
- 减少内存冗余的ZeRO + Gemini
Colossal-AI 支持使用无冗余优化器 (ZeRO) 来优化内存使用,这种方法可以有效减少内存冗余,并且相比传统的数据并行策略,不会牺牲计算粒度和通信效率,同时可以大幅提高内存使用效率。为了进一步提升 ZeRO 的性能,Colossal-AI 引入了自动Chunk机制。通过将运算顺序上连续的一组参数存入同一个 Chunk中(Chunk 是一段连续的内存空间),可以确保每个 Chunk 的大小相同,从而提高内存使用效率。使用Chunk 方式组织内存可以保证 PCI-e 和 GPU-GPU之间的网络带宽得到有效利用,减小通信次数,同时避免潜在的内存碎片。
Chunk机制
此外,Colossal-AI的异构内存空间管理器Gemini支持将优化器状态从 GPU 卸载到 CPU ,以节省 GPU 内存占用。可以同时利用 GPU 内存、CPU 内存(由 CPU DRAM 或 NVMe SSD内存组成)来突破单GPU内存墙的限制,进一步扩展了可训练模型规模。
通过ZeRO + Gemini提升硬件的模型容量
开放协作
尽管此次开源包含了复现ChatGPT的完整算法流程和必要软件系统,但对于像ChatGPT这样的超大AI大模型,想要实际落地应用,还需要数据、算力至少2方面的努力。毕竟训练一个1750亿参数的GPT-3就需要数百万美元算力。因此,长期以来预训练大模型都由少数大型私营科技公司垄断。
好在开源社区已成功进行了新的尝试。例如,完全开放代码、数据集、权重的1760亿参数的BLOOM模型,共有来自全球60个国家、超过250个机构,以及超过1000名研究人员参与其中,其中包括以个人名义参加的Meta、谷歌等大厂员工。而前段时间大火的开源图文生成模型Stable Diffusion,也是由Stability AI、EleutherAI和LAION等组织共同完成的。
借鉴上述成功模式,该项目也在吸引更多的合作者:无论是个人开发者,还是算力、数据、模型等可能合作方,都有机会参与其中,大显身手,以复现ChatGPT为起点,拥抱大模型时代!
可通过以下方式联系或参与:
- 在GitHub发布issue或提交PR
- 加入Colossal-AI用户微信或Slack群交流
- 点击阅读原文填写合作提案
- 发送合作提案到邮箱contact@hpcaitech.com
开源地址:https://github.com/hpcaitech/ColossalAI
参考链接:https://www.hpc-ai.tech/blog/colossal-ai-chatgpt
(阅读原文链接)https://www.hpc-ai.tech/partners

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
联邦GNN综述与经典算法介绍
作者:京东科技 李杰 联邦学习和GNN都是当前AI领域的研究热点。联邦学习的多个参与方可以在不泄露原始数据的情况下,安全合规地联合训练业务模型,目前已在诸多领域取得了较好的结果。GNN在应对非欧数据结构时通常有较好的表现,因为它不仅考虑节点本身的特征还考虑节点之间的链接关系及强度,在诸如:异常个体识别、链接预测、分子性质预测、地理拓扑图预测交通拥堵等领域均有不俗表现。 那么GNN与联邦学习的强强组合又会擦出怎样的火花? 通常一个好的GNN算法需要丰富的节点特征与完整的连接信息,但现实场景中数据孤岛问题比较突出,单个数据拥有方往往只有有限的数据、特征、边信息,但我们借助联邦学习技术就可以充分利用各方数据安全合规地训练有强劲表现的GNN模型。 读罢此文,您将获得如下知识点: •GNN经典算法原理及计算模型 •联邦学习定义与分类 •联邦GNN的两种分类方法及细节 •基于横向联邦的FedGNN模型(微软亚研,2021)、基于纵向联邦的VFGNN模型(浙大+蚂蚁,2022) 一、GNN原理 1.1 图场景及数据表示 能用图刻画的场景很多,比如:社交网络、生物分子、电商网络、知识图谱等。 图最基础...
- 下一篇
时隔多年,这次我终于把动态代理的源码翻了个地儿朝天
本文内容整理自 博学谷狂野架构师 动态代理简介 Proxy模式是常用的设计模式,其特征是代理类与委托类有同样的接口,代理类主要负责为委托类预处理消息、过滤消息、把消息转发给委托类,以及事后处理消息等。 用户可以更加结构图,自己编码完成Proxy模式。这种实现称为静态代理。 Java提供了java.lang.reflect.Proxy类与InvocationHandler接口,配合反射,可以实现动态代理。静态代理的代理类与代理操作,都是事先编码,运行过程种无法修改代理结构。动态代理的代理与代理操作,都是在运行过程中,动态生成,可以在运行过程中,修改代理结构,符合面向对象的开闭原则。 最最最主要的原因就是,在不改变目标对象方法的情况下对方法进行增强,比如,我们希望对方法的调用增加日志记录,或者对方法的调用进行拦截,等等... 动态代理用于将在不需要修改原代码的情况下进行代码的增加,spring中的AOP,事务,都是使用动态代理来实现的,我们天天都在使用动态代理只是自己不知道而已。 动态代理三大要素 需要定义一个接口,java动态代理类只能代理接口**(不支持抽象类),如果没...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2配置默认Tomcat设置,开启更多高级功能
- Red5直播服务器,属于Java语言的直播服务器
- CentOS7设置SWAP分区,小内存服务器的救世主
- CentOS7安装Docker,走上虚拟化容器引擎之路
- SpringBoot2编写第一个Controller,响应你的http请求并返回结果
- CentOS关闭SELinux安全模块
- CentOS7,CentOS8安装Elasticsearch6.8.6
- Jdk安装(Linux,MacOS,Windows),包含三大操作系统的最全安装
- Linux系统CentOS6、CentOS7手动修改IP地址
- Windows10,CentOS7,CentOS8安装MongoDB4.0.16