首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://my.oschina.net/u/5658056/blog/5591620

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

DDL 毫秒级同步,Light Schema Change 的设计与实现|新版本揭秘

作者介绍: 刘常良:Apache Doris Contributor,SelectDB 存储层研发工程师。 吴迪:Apache Doris Committer,SelectDB 生态研发工程师。 在 OLAP 的业务场景中,Schema Change 是一个相对常见的业务需求,当上游数据源维度发生变化时,通常需要将数仓中的表结构进行相应的变更。相对于业界其他 OLAP 数据库,Apache Doris 对于 Schema Change 的支持非常友好,可支持 Online Schema Change,进行加减列或修改列类型时无须停服,保证了系统的高可用和业务的平稳运转。但在部分场景下,Schema Change 也存在一定的瓶颈,例如:在面对大数据量宽表场景下, Schema Change 执行效率相对较低、耗费时间较长;另外基于 Flink 和 Doris 构建实时数仓时,因 Schema Change 是异步作业,一旦上游表发生维度变化,需要自己维护 Schema Change 的执行状态,并在完成后重启 Flink Job,无法做到自动化变更,冗长复杂的操作流程无疑增加了许多开发...

还不会日志异常检测?看完这篇文章就够了!

本篇文章将从日志异常检测面临的挑战、日志异常检测中的深度学习、以及日志异常检测算法评估和最后对日志异常检测的整体总结四个方面去讨论日志异常检测相关内容。 日志异常检测的挑战 当前,日志异常检测面临的挑战主要有以下八点: 数据表示:深度学习模型接受结构化的数字形式的输入。 数据不稳定:随着应用程序的发展,可能会出现不在训练数据中的新日志事件类型。 数据不平衡:异常数据的数量远少于正常数据。 异常多样性:异常日志的表现内容是多样的,包括序列模式、频率、相关性、到达时间等。 标签可用性:带标注的日志是稀缺的。 流处理:日志是数据流,实时检测比事后分析更符合实际需求。 数据量大:日志数据的生成量很大,一些系统每天产生数百万甚至数十亿的事件,这对算法的效率有要求。 模型可解释性:基于神经网络的方法通常比传统的机器学习方法具有更低的可解释性。当涉及到针对关键系统行为或安全事件做出合理决策时,理解正确和错误分类背后的原因尤其困难。 日志异常检测中的深度学习 预处理和特征表示 常用的对无结构的日志做预处理方式主要有两种。第一种方法是最常见的方法,利用解析器对每条日志提取唯一的事件标识符以及事件参数值,...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

用户登录
用户注册