Python图像处理丨两种实现图像形态学转化运算
摘要:本篇文章主要讲解Python调用OpenCV实现图像形态学转化,包括图像顶帽运算和图像黑帽运算。
本文分享自华为云社区《[Python图像处理] 十.形态学之图像顶帽运算和黑帽运算》,作者: eastmount 。
一. 图像顶帽运算
1.基本原理
图像顶帽(或图像礼帽)运算是原始图像减去图像开运算的结果,得到图像的噪声。如下图所示:
顶帽运算(img) = 原始图像(img) - 开运算(img)
2.函数原型
图像开运算主要使用的函数morphologyEx,它是形态学扩展的一组函数,其参数cv2.MORPH_TOPHAT对应开运算。其原型如下:
dst = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel)
参数dst表示处理的结果,src表示原图像,cv2.MORPH_TOPHAT表示顶帽运算,kernel表示卷积核。下图表示5*5的卷积核,可以采用函数 np.ones((5,5), np.uint8) 构建。
卷积如下图所示:
3.代码实现
完整代码如下所示:
#encoding:utf-8 import cv2 import numpy as np #读取图片 src = cv2.imread('test01.png', cv2.IMREAD_UNCHANGED) #设置卷积核 kernel = np.ones((5,5), np.uint8) #图像顶帽运算 result = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel) #显示图像 cv2.imshow("src", src) cv2.imshow("result", result) #等待显示 cv2.waitKey(0) cv2.destroyAllWindows()
输出结果如下图所示,可以看到外部噪声被提取出来。
如果想获取更多的细节,可以将卷积设置为10*10,如下图所示:
kernel = np.ones((10,10), np.uint8)
result = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel)
二. 图像黑帽运算
1.基本原理
图像黑帽运算是图像闭运算操作减去原始图像的结果,得到图像内部的小孔,或者前景色中的小黑点。如下图所示:
黑帽运算(img) = 闭运算图像(img) - 原始图像(img)
2.函数原型
图像开运算主要使用的函数morphologyEx,它是形态学扩展的一组函数,其参数cv2.MORPH_BLACKHAT对应开运算。其原型如下:
dst = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel)
参数dst表示处理的结果,src表示原图像,cv2.MORPH_BLACKHAT表示黑帽运算,kernel表示卷积核。下图表示5*5的卷积核,可以采用函数 np.ones((5,5), np.uint8) 构建。
3.代码实现
完整代码如下所示:
#encoding:utf-8 import cv2 import numpy as np #读取图片 src = cv2.imread('test02.png', cv2.IMREAD_UNCHANGED) #设置卷积核 kernel = np.ones((5,5), np.uint8) #图像黑帽运算 result = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel) #显示图像 cv2.imshow("src", src) cv2.imshow("result", result) #等待显示 cv2.waitKey(0) cv2.destroyAllWindows()
输出结果如下图所示,可以看到图像内部黑点被提取出来。
但内部比较大的四个黑点没有被提取,如果想获取更多的细节,可以将卷积设置为10*10,如下图所示:
kernel = np.ones((10,10), np.uint8)
result = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel)
本文摘录自eastmount X华为云开发者社区联合出品的电子书《从零到一 • Python图像处理及识别》,点击免费下载电子书。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
被USENIX ATC收录,只需10天即可训练出10万亿超大模型的分布式训练框架EPL,在这!
近日,阿里云机器学习PAI关于深度学习模型高效的分布式训练框架的论文《 Whale: Efficient Giant Model Training over Heterogeneous GPUs 》被计算机系统领域国际顶级学术会议USENIX ATC'22接收。 Whale是阿里云机器学习PAI平台自研的分布式训练框架,开源后的名称是EPL(Easy Parallel Library),Whale通过对不同并行化策略进行统一抽象、封装,在一套分布式训练框架中支持多种并行策略,并进行显存、计算、通信等全方位的优化,来提供易用、高效的分布式训练框架。Whale提供简洁易用的接口,用户只需添加几行annotation即可组合各种混合并行策略。同时Whale提供了基于硬件感知的自动化分布式并行策略,感知不同硬件的算力、存储等资源,根据这些资源来合理的切分模型,均衡不同硬件上的计算量,最大化计算效率。借助Whale的硬件感知负载均衡算法,Bert-Large、Resnet50和GNMT模型 在异构GPU训练上提速1.2至1.4倍。同时,使用Whale框架, 万亿M6模型使用480 张 V100在...
- 下一篇
《Java 数据结构与算法》第1章:链表
持续坚持原创输出,点击蓝字关注我吧 作者:小傅哥博客:https://bugstack.cn ❝ 沉淀、分享、成长,让自己和他人都能有所收获!😜 ❞ 一、前言 二、链表数据结构 三、链表分类类型 1. 单向链表 2. 双向链表 3. 循环链表 四、实现一个链表 1. 链表节点 2. 头插节点 3. 尾插节点 4. 拆链操作 5. 删除节点 五、链表使用测试 六、常见面试问题 一、前言 链表的历史 于1955-1956年,由兰德公司的Allen Newell、Cliff Shaw和Herbert A. Simon开发了链表,作为他们的信息处理语言的主要数据结构。链表的另一个早期出现是由 Hans Peter Luhn 在 1953 年 1 月编写的IBM内部备忘录建议在链式哈希表中使用链表。 到 1960 年代初,链表和使用这些结构作为主要数据表示的语言的实用性已经很好地建立起来。MIT 林肯实验室的 Bert Green于 1961 年 3 月在 IRE Transactions on Human Factors in Electronics 上发表了一篇题为“用于符号操作的计算机语...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2更换Tomcat为Jetty,小型站点的福音
- CentOS6,CentOS7官方镜像安装Oracle11G
- SpringBoot2全家桶,快速入门学习开发网站教程
- 设置Eclipse缩进为4个空格,增强代码规范
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- SpringBoot2整合Thymeleaf,官方推荐html解决方案
- Windows10,CentOS7,CentOS8安装Nodejs环境
- CentOS7编译安装Cmake3.16.3,解决mysql等软件编译问题
- CentOS8安装MyCat,轻松搞定数据库的读写分离、垂直分库、水平分库
- CentOS关闭SELinux安全模块