结合机器学习的多指标异常检测方法总结分析
云智慧 AIOps 社区是由云智慧发起,针对运维业务场景,提供算法、算力、数据集整体的服务体系及智能运维业务场景的解决方案交流社区。该社区致力于传播 AIOps 技术,旨在与各行业客户、用户、研究者和开发者们共同解决智能运维行业技术难题,推动 AIOps 技术在企业中落地,建设健康共赢的AIOps 开发者生态。 前言 本篇我们主要从以下几个方面对多指标系统的异常检测方法进行了论述:第一部分从分布的角度定义了多指标系统的异常,并介绍了为什么单指标异常检测方法可能会在多指标系统中失效。第二部分从统计、机器学习两方面,梳理现有的部分多指标异常检测方法的思路。第三部分介绍了一种基于投影降维的多指标异常检测思路,并讨论了后续待解决的几个关键问题。 多指标异常定义 这里我们仅基于数据的统计学特征定义异常,不考虑数据异常是否是业务异常。设有 N 条长度为 T 的时间序列,记为 对时刻 t ,定义异常区域 若 则认为此多元时间序列在时刻 t 出现异常。相应的,正常域为异常区域的补集。 在此定义下,单点异常、上下文异常、集体异常 [1] 可统一形式。单点异常可通过设定一个不随时间变化的异常域 A 定义,...