python logistic回归
常用的分类与预测算法 回归分析 决策树 人工神经网络 贝叶斯网络 支持向量机 其中回归分析包括: 线性回归---自变量因变量线性关系,最小二乘法求解。 非线性回归--自变量因变量非线性关系,函数变换为线性关系,或非线性最小二乘方法求解。 logistic回归--因变量一般有1和0两种取值,将因变量的取值范围控制再0-1范围内,表示取值为1的概率。 岭回归--要求自变量之间具有多重共线性,是一种改进最小二乘法的方法。 主成分回归--要求自变量之间具有多重共线性,是对最小二乘法的方法的改进,可以消除自变量间的多重共线性。 一般自变量和因变量之间存在线性关系的时候,就可以用线性回归的方法,而两者之间呈现的是某种曲线特性时,就用非线性回归,当自变量之间出现多重共线时,用最小二乘估计的回归系数不准确,则主要用岭回归和主成分回归法。 此处的logistics回归属于概率性非线性回归,对于二分类问题,y只有是否两个值,1和0,在自变量x1,x2,x3作用下y取值为是的概率为p,取值为否的概率为1-p。logistics回归 p=P(y=1|X),取0概率是1-p,取1和取0的概率之比为p/1-p,成...