陈天奇团队发布TVM:把深度学习部署到手机、树莓派等更多硬件
△ 陈天奇,华盛顿大学计算机系博士生,此前毕业于上海交通大学ACM班。XGBoost、cxxnet等著名机器学习工具的作者,MXNet的主要贡献者之一。
DMLC项目发起人陈天奇今天早间宣布推出TVM。
所谓TVM,按照正式说法:就是一种将深度学习工作负载部署到硬件的端到端IR(中间表示)堆栈。换一种说法,可以表述为一种把深度学习模型分发到各种硬件设备上的、端到端的解决方案。
陈天奇在微博上表示,TVM和之前发布的模块化深度学习系统NNVM一起,“组成深度学习到各种硬件的完整优化工具链”。
同在DMLC小组的刘洪亮(phunter_lau)进一步在微博上解释了这个工作的意义:“TVM可以把模型部署到不同硬件,比如群众常问的能不能用AMD的GPU,用FPGA怎么搞,TVM提供这个中间层有效解决这个问题
